首页 > 论文 > 激光与光电子学进展 > 55卷 > 3期(pp:31010--1)

基于自适应近邻局部保持投影算法的人脸识别

Face Recognition Based on Adaptive Neighborhood Locality Preserving Projection Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对传统的局部保持投影算法(LPP)直接使用数据的原始空间信息导致选取近邻不准确, 以及LPP算法投影时忽略数据类别信息的问题, 提出一种基于自适应近邻局部保持投影的人脸识别方法。该方法在特征提取时利用可变的相似度、近邻信息以及数据类别信息构建目标函数, 使得在投影子空间中同类样本尽量紧凑, 异类样本尽量远离。通过最小化目标函数自适应优化邻接矩阵与投影矩阵, 用优化后的投影矩阵对高维数据进行降维, 采用降维后的数据进行人脸分类识别。将该方法应用于扩展Yale人脸数据库、CMU-PIE人脸数据库、MSRA人脸数据库和CAS-PEAL人脸数据库中进行人脸识别, 实验结果验证了其有效性。

Abstract

Traditional locality preserving projection (LPP) algorithm directly uses the spatial information of original data, which leads to inaccurately select neighborhood, and ignores data categories information of projection of LPP algorithm. To solve these problems, a face recognition method is proposed based on adaptive neighborhood LPP. In the feature extraction, the objective function is constructed based on the variable similarity, neighborhood information, and data categories information, so that the same class samples are close and different class samples are far away from each other in projected subspace. Adjacency matrix and projection matrix are adaptably optimized by minimizing objective function. Optimized projection matrix is used to reduce the dimension of high-dimensional face data, and low-dimensional data is used to classify and recognize face samples. The experimental results on Yale B, PIE, MSRA and CAS-PEAL databases validate the effectiveness of the proposed algorithm.

中国激光微信矩阵
补充资料

中图分类号:TP391

DOI:10.3788/LOP55.031010

所属栏目:图像处理

基金项目:国家自然科学基金(61472274)

收稿日期:2017-09-13

修改稿日期:2017-09-26

网络出版日期:--

作者单位    点击查看

周博:天津大学电气自动化与信息工程学院, 天津 300072
何宇清:天津大学电气自动化与信息工程学院, 天津 300072
王建:天津大学电气自动化与信息工程学院, 天津 300072

联系人作者:何宇清(heyuqing@tju.edu.cn)

备注:周博(1993-), 男, 硕士研究生, 主要从事模式识别与机器学习方面的研究。E-mail: zhoubo@tju.edu.cn

【1】Xia J, Pei D, Wang Q Z, et al. Face recognition based on local adaptive ternary derivative pattern coupled with Gabor feature[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111004.
夏军, 裴东, 王全州, 等. 融合Gabor特征的局部自适应三值微分模式的人脸识别[J]. 激光与光电子学进展, 2016, 53(11): 111004.

【2】Pang Y W, Liu Z K, Yu N H. A new nonlinear feature extraction method for face recognition[J]. Neurocomputing, 2006, 69(7): 949-953.

【3】Chihaoui M, Elkefi A, Bellil W, et al. A survey of 2D face recognition techniques[J]. Computers, 2016, 5(4): 21.

【4】Cui P, Yan T T. A SVM-based feature extraction for face recognition[J]. Pattern Recognition, 2016, 43(8): 2871-2881.

【5】Xu Y, Fang X Z, Wu J, et al. Discriminative transfer subspace learning via low-rank and sparse representation[J]. IEEE Transactions on Image Processing, 2016, 25(2): 850-863.

【6】Liu G C, Lin Z C, Yan S C, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(1): 171-184.

【7】Gao W J, Bai W R, Gong W J, et al. Orthogonal local sensitive discriminant analysis algorithm based on adaptive neighborhood choosing[J]. Computer Engineering and Design, 2012, 33(5): 1968-1972.
高玮军, 白万荣, 公维军, 等. 基于自适应邻域选择的正交局部敏感判别分析[J]. 计算机工程与设计, 2012, 33(5): 1968-1972.

【8】Tipping M E, Bishop C M. Probabilistic principal component analysis[J]. Journal of the Royal Statistical Society, 1999, 61(3): 611-622.

【9】Xu Y, Wei Z Y. An improved traffic sign image recognition algorithm[J]. Laser & Optoelectronics Progress, 2017, 54(2): 021001.
徐岩, 韦镇余. 一种改进的交通标志图像识别算法[J]. 激光与光电子学进展, 2017, 54(2): 021001.

【10】Pang Y W, Wang S, Yuan Y. Learning regularized LDA by clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(12): 2191-2201.

【11】He X, Niyogi P. Locality preserving projections (LPP)[C]//Proceedings of the 16th International Conference on Neural Information Processing Systems, 2003, 16(1): 186-197.

【12】He X F, Yan S C, Hu Y X, et al. Face recognition using Laplacianfaces[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2005, 27(3): 328-40.

【13】Zhang X, Yi H J, Hou Y Q, et al. Fast reconstruction in fluorescence molecular tomography based on locality preserving projections[J]. Acta Optica Sinica, 2016, 36(7): 0717001.
张旭, 易黄建, 侯榆青, 等. 基于局部保留投影的荧光分子断层成像快速重建[J]. 光学学报, 2016, 36(7): 0717001.

【14】Jia J R, Ruan Q Q, Jin Y. Geometric preserving local fisher discriminant analysis for person re-identification[J]. Neurocomputing, 2016, 205(C): 92-105.

【15】He J R, Ding L X, Jiang L, et al. A flexible and efficient algorithm for regularized Marginal Fisher analysis[C]//International Joint Conference on Neural Networks, 2014: 4198-4205.

【16】Dornaika F, Assoum A. Enhanced and parameterless locality preserving projections for face recognition[J]. Neurocomputing, 2013, 99(1): 448-457.

【17】Li Q Q, Yang H X, Feng J P, et al. Face recognition algorithm based on 2DPCA+2DLDA and improved LPP[J]. Computer Engineering and Applications, 2015, 51(21): 199-204.
李球球, 杨恢先, 奉俊鹏, 等. 2DPCA+2DLDA和改进的LPP相结合的人脸识别算法[J]. 计算机工程与应用, 2015, 51(21): 199-204.

【18】Ji Z, Pang Y W, He Y Q, et al. Semi-supervised LPP algorithms for learning-to-rank-based visual search reranking[J]. Information Sciences, 2015, 302(C): 83-93.

【19】Pang Y W, Zhou B, Nie F P. Simultaneously learning neighborship and projection matrix for supervised dimensionality reduction[EB/OL].[2017-12-21]. https: //arxiv.org/abs/1709.02896.

【20】Xu Y, Fang X Z, Wu J, et al. Discriminative transfer subspace learning via low-rank and sparse representation[J]. IEEE Transactions on Image Processing, 2015, 25(2): 850-863.

【21】Yang F F, Wu X S, Gu B Z. A face recognition algorithm based on low-rank subspace projection and Gabor feature via sparse representation[J]. Computer Engineering & Science, 2017, 39(1): 131-137.
杨方方, 吴锡生, 顾标准. 基于低秩子空间投影和Gabor特征的稀疏表示人脸识别算法[J]. 计算机工程与科学, 2017, 39(1): 131-137.

【22】Dreves A, Facchinei F, Kanzow C, et al. On the solution of the KKT conditions of generalized Nash equilibrium problems[J]. Siam Journal on Optimization, 2015, 21(3): 1082-1108.

【23】Yu Z J, Wang S B. Improved PCA-SIFT algorithm for matching stereo system[J]. Laser & Optoelectronics Progress, 2016, 53(3): 031501.
于之靖, 王韶彬. 改进PCA-SIFT算法的立体匹配系统[J]. 激光与光电子学进展, 2016, 53(3): 031501.

引用该论文

Zhou Bo,He Yuqing,Wang Jian. Face Recognition Based on Adaptive Neighborhood Locality Preserving Projection Algorithm[J]. Laser & Optoelectronics Progress, 2018, 55(3): 031010

周博,何宇清,王建. 基于自适应近邻局部保持投影算法的人脸识别[J]. 激光与光电子学进展, 2018, 55(3): 031010

被引情况

【1】张桐喆,苏育挺,郭洪斌. 基于最大间隔的半监督图像搜索重排序方法. 激光与光电子学进展, 2018, 55(11): 111001--1

【2】袁丽莎,娄梦莹,刘娅琴,杨丰,黄靖. 结合深度神经网络和随机森林的手掌静脉分类. 激光与光电子学进展, 2019, 56(10): 101010--1

【3】牛强,陈秀宏. 基于隐式低秩表示的联合投影学习算法及图像识别. 激光与光电子学进展, 2019, 56(14): 141006--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF