首页 > 论文 > 光学学报 > 38卷 > 4期(pp:411007--1)

一种存储伪图像的手掌静脉识别研究

Palm Vein Recognition with Pseudo Image Storage

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

传统的生物特征识别方法直接将用户的生物特征模板存储于数据库中。由于生物特征具有唯一性和稳定性,一旦被窃取,用户的生物特征将终身不可再用。针对此问题提出了一种存储伪生物特征图像的手掌静脉识别算法,该算法不从外部输入密钥,不存储原始掌脉生物特征模板。在注册阶段,于近红外光下采集用户手掌静脉图像,对图像进行加密形成伪图像,将伪图像存储于数据库中;在认证阶段,将数据库中的伪图像解密后提取特征,与认证阶段采集图像提取的特征进行匹配,给出认证结果。在PolyU图库、CASIA图库和自建图库上进行测试,结果表明:在样本数量为300时,该算法在上述3种图库中的等误率分别为0.4135%、0.5576%、0.4744%,识别时间分别为325.0740,316.0800,322.6530 ms。在小范围样本内,所提算法适用于安防、考勤等场合,具有一定的实用价值。

Abstract

Traditional biometric system stores the biometric template in the database directly. While the biometric template is unique and permanent, it can’t be used anymore if stolen. To solve this problem, we propose a palm vein recognition algorithm with pseudo image storage, which doesn’t input any key information and doesn’t store original palm vein template. In the stage of register, the system collects palm vein images under near-infrared light. Then the collected image is stored in the form of pseudo image. In the stage of recognition, the pseudo image is decrypted and the feature is extracted. The feature is matched with input image and the authentication result is given. The proposed algorithm is tested on PolyU database, CASIA database, and self-built database. The experimental results show that in sample range of 300, the proposed algorithm can reach the equal error rates of 0.4135%, 0.5576%, and 0.4744% and recognition times of 325.0740 ms, 316.0800 ms, and 322.6530 ms for the above databases. The algorithm has practical value for security and checking-in occasions in certain sample range.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

DOI:10.3788/aos201838.0411007

所属栏目:成像系统

基金项目:国家自然科学基金(60972123)、辽宁省自然科学基金(2015020057,2015020100)

收稿日期:2017-10-10

修改稿日期:2017-11-14

网络出版日期:--

作者单位    点击查看

吴微:沈阳大学信息工程学院, 辽宁 沈阳 110041
林森:辽宁工程技术大学电子与信息工程学院, 辽宁 葫芦岛 125105
苑玮琦:沈阳工业大学视觉检测技术研究所, 辽宁 沈阳 110870

联系人作者:吴微(wuwei429@163.com)

备注:吴微(1979-),女,博士,副教授,硕士生导师,主要从事生物特征识别方面的研究。E-mail: wuwei429@163.com

【1】Wright J, Yang A Y, Sastry S S, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009, 31(2): 210-227.

【2】Wang Y X, Luo Y H, Yin D. A super resolution technology of face image for surveillance video[J]. Acta Optica Sinica, 2017, 37(3): 0318012.
王嫣然, 罗宇豪, 尹东. 一种监控视频人脸图像超分辨技术[J]. 光学学报, 2017, 37(3): 0318012.

【3】Han M, Peng Y H, Zhang S L, et al. Iris recognition based on empirical mode decomposition[J]. Acta Optica Sinica, 2010, 30(2): 364-368.
韩民, 彭玉华, 张顺利, 等. 基于经验模态分解的虹膜识别[J]. 光学学报, 2010, 30(2): 364-368.

【4】Yuan W Q, Feng S Y. Simulation system of improved non-contact on-line palmprint recognition[J]. Acta Optica Sinica, 2011, 31(7): 0712003.
苑玮琦, 冯素月. 改进的非接触式在线掌纹识别模拟系统[J]. 光学学报, 2011, 31(7): 0712003.

【5】Zhao S, Wang B, Tang C Y. Arm vein feature extraction and matching based on chain code[J]. Acta Optica Sinica, 2016, 36(5): 515003.
赵珊, 王彪, 唐超颖. 基于链码表示的手臂静脉特征提取与匹配[J]. 光学学报, 2016, 36(5): 515003.

【6】Yuan W Q, Ke L, Bai Y. Biometric identification technology[M]. Beijing: Science Press, 2009.
苑玮琦, 柯丽, 白云. 生物特征识别技术[M]. 北京: 科学出版社, 2009.

【7】Jain A, Ross A A, Nandakumar K. Introduction to biometrics[M]. New York: Springer, 2011.

【8】Watanabe M. Palm vein authentication[M]∥Advances in biometrics: Sensors, algorithms and systems. [S.l.]: [s.n.], 2009: 75-88.

【9】Ross A, Othman A. Visual cryptography for biometric privacy[J]. IEEE Transactions on Information Forensics & Security, 2011, 6(1): 70-81.

【10】Jain A K, Uludag U. Hiding biometric data[J]. IEEE Computer Society, 2003, 25(11): 1494-1498.

【11】Ratha N K, Connell J H, Bolle R M. Enhancing security and privacy in biometrics-based authentication systems[J]. IBM Systems Journal, 2001, 40(3): 614-634.

【12】Canuto A M P, Pintro F, Xavier-Junior J C. Investigating fusion approaches in multi-biometric cancellable recognition[J]. Expert Systems with Applications, 2013, 40(6): 1971-1980.

【13】Bringer J, Morel C, Rathgeb C. Security analysis and improvement of some biometric protected templates based on Bloom filters[J]. Image & Vision Computing, 2016, 58: 239-253.

【14】Sutcu Y, Li Q, Memon N. Secure biometric templates from fingerprint-face features[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2007: 1-6.

【15】Nagar A, Nandakumar K, Jain A K. Multibiometric cryptosystems based on feature-level fusion[J]. IEEE Transactions on Information Forensics & Security, 2012, 7(1): 255-268.

【16】Tuyls P, Tuyls P, Obi C, et al. Key extraction from general nondiscrete signals[J]. IEEE Transactions on Information Forensics & Security, 2010, 5(2): 269-279.

【17】Wang N. Research on palm vein extraction and recognition method[D]. Shenyang: Shenyang University of Technology, 2011.
王楠. 手掌静脉特征提取与识别方法研究[D]. 沈阳: 沈阳工业大学, 2011.

【18】Yan X K, Kang W X, Deng F Q, et al. Palm vein recognition based on multi-sampling and feature-level fusion[J]. Neurocomputing, 2015, 151(151): 798-807.

【19】Wu K S, Lee J C, Lo T M, et al. A secure palm vein recognition system[J]. Journal of Systems & Software, 2013, 86(11): 2870-2876.

【20】Ladoux P O, Rosenberger C, Dorizzi B. Palm vein verification system based on SIFT matching[C]. International Conference on Advances in Biometrics, 2009, 5558: 1290-1298.

【21】Li Q, Zeng Y A, Peng X J, et al. Curvelet-based palm vein biometric recognition[J]. Chinese Optics Letters, 2010, 8(6): 577-579.

【22】Lee J C. A novel biometric system based on palm vein image[J]. Pattern Recognition Letters, 2012, 33(12): 1520-1528.

【23】Wang R, Wang G Y, Chen Z, et al. A palm vein identification system based on Gabor wavelet features[J]. Neural Computing and Applications, 2014, 24(1): 161-168.

【24】Kang W X, Wu Q X. Contactless palm vein recognition using a mutual foreground-based local binary pattern[J]. IEEE Transactions on Information Forensics & Security, 2014, 9(11): 1974-1985.

【25】Wang J G, Yau W Y, Suwandy A, et al. Person recognition by fusing palmprint and palm vein images based on “Laplacianpalm” representation[J]. Pattern Recognition, 2008, 41(5): 1514-1527.

【26】Lee E C, Park K R. Image restoration of skin scattering and optical blurring for finger vein recognition[J]. Optics and Lasers in Engineering, 2011, 49(7): 816-828.

【27】Wang H W, Wu Z B, Meng J, et al. Linear and non-linear method of partial least squares[M]. Beijing: National Defense Industry Press, 2006: 150-155.
王惠文, 吴载斌, 孟洁, 等. 偏最小二乘回归的线性与非线性方法[M]. 北京: 国防工业出版社, 2006: 150-155.

【28】Lu G, Zhang D, Wang K. Palmprint recognition using eigenpalms features[J]. Pattern Recognition Letters, 2003, 24(9): 1463-1467.

【29】Zhang D, Guo Z, Lu G, et al. An online system of multispectral palmprint verification[J]. IEEE Transactions on Instrumentation & Measurement, 2010, 59(2): 480-490.

【30】Wu W, Yuan W Q, Lin S, et al. Selection of typical wavelength for palm vein recognition[J]. Acta Optica Sinica, 2012, 32(12): 1211002.
吴微, 苑玮琦, 林森, 等. 手掌静脉识别典型波长选择[J]. 光学学报, 2012, 32(12): 1211002.

【31】Zhou Y, Kumar A. Human identification using palm-vein images[J]. IEEE Transactions on Information Forensics & Security, 2011, 6(4): 1259-1274.

【32】Badrinath G S, Gupta P. Stockwell transform based palm-print recognition[J]. Applied Soft Computing Journal, 2011, 11(7): 4267-4281.

【33】Wu W, Yuan W Q, Lin S, et al. Fast palm vein identification algorithm based on grayscale surface matching[J]. Acta Optica Sinica, 2013, 33(10): 1015004.
吴微, 苑玮琦, 林森, 等. 基于灰度曲面匹配的快速手掌静脉识别[J]. 光学学报, 2013, 33(10): 1015004.

引用该论文

Wu Wei,Lin Sen,Yuan Weiqi. Palm Vein Recognition with Pseudo Image Storage[J]. Acta Optica Sinica, 2018, 38(4): 0411007

吴微,林森,苑玮琦. 一种存储伪图像的手掌静脉识别研究[J]. 光学学报, 2018, 38(4): 0411007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF