首页 > 论文 > 光学学报 > 38卷 > 4期(pp:430001--1)

水体细菌微生物多波长透射光谱定量分析归一化方法研究

Normalization of Quantitative Analysis for Bacteria Multi-Wavelength Transmission Spectroscopy in Water

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

快速准确获取水体细菌微生物浓度信息,对饮用水卫生安全监管具有重要意义。基于多波长透射光谱技术研究了水体细菌微生物浓度定量反演方法,并重点研究了光谱数据的归一化处理方法(颗粒浓度归一化、最大值归一化、积分归一化、平均归一化)对水体细菌微生物浓度反演结果准确性的影响。基于Mie散射理论建立了大肠埃希氏菌(大肠杆菌)多波长透射光谱解析模型,通过对归一化后的光谱进行解析,获取了大肠杆菌的结构信息,并以此构建出单种细菌的多波长透射参考光谱;根据测量光谱与单种细菌参考光谱的相关性反演细菌浓度,并对比分析了不同归一化处理方法下细菌浓度反演结果的准确性。研究结果表明:与平板菌落计数法相比,平均归一化光谱反演细菌浓度的最大相对误差为0.92%,平均相对误差为0.70%,线性相关系数达到0.9984,其准确性和稳定性均为最优。本研究为水体细菌微生物的快速定量检测与预警提供了基础数据。

Abstract

Acquiring the concentration of bacteria in water quickly and accurately is of great significance for the supervision hygiene and safety of drinking water. We use multi-wavelength transmission spectroscopy to determine the concentration of bacteria in water, and mainly study the influences of different normalizations of the spectra (particle concentration normalization, maximum normalization, integral normalization, and average normalization) on the accuracy of bacterial concentration. According to the spectra interpretation model of Escherichia coli (E. coli) established on Mie scattering theory, we can obtain the bacteria size by the normalized spectra interpretation, and calculate a single bacterium’s reference spectra. Based on the relation curve between the measured spectra and a single bacterium’s reference spectra, we can obtain the bacterial concentration and analyze the accuracy of the bacterial concentration by several normalization procedures. Compared with plate counting, the bacterial concentration calculated by the average normalization has the maximum relative error of 0.92%, the average relative error of 0.70%, and the correlation coefficient of 0.9984. The accuracy and stability of the method are the best. The study can provide the basic data for the quantitative detection and early warning of bacteria in water.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433.4

DOI:10.3788/aos201838.0430001

所属栏目:光谱学

基金项目:安徽省自然科学基金项目(1508085JGD02,1608085QF137)、安徽省科技重大专项项目(15CZZ04125)、国家自然科学基金(61705237)

收稿日期:2017-10-17

修改稿日期:2017-11-20

网络出版日期:--

作者单位    点击查看

胡玉霞:中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
赵南京:中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
甘婷婷:中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
段静波:中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
孟德硕:中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
刘建国:中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031
刘文清:中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031安徽省环境光学监测技术重点实验室, 安徽 合肥 230031

联系人作者:赵南京(njzhao@aiofm.ac.cn)

备注:胡玉霞(1984—),女,博士研究生,主要从事水体细菌微生物光谱检测技术方面的研究。E-mail: yxhu@aiofm.ac.cn

【1】Loske A M, Tello E M, Vargas S, et al. Escherichia coli viability determination using dynamic light scattering: A comparison with standard methods[J]. Archives of Microbiology, 2014, 196(8): 557-563.

【2】Kuhn W, Armstrong D, Atteberry S, et al. Usefulness of the paralensTM fluorescent microscope adaptor for the identification of mycobacteria in both field and laboratory settings[J]. The Open Microbiology Journal, 2010, 4(1): 30-33.

【3】Garrity G M, Bell J A, Lilburn T G. Taxonomic outline of the prokaryotes. Bergey’s manual of systematic bacteriology[M]. 2nd Ed. New York: Springer, 2003: 382-385.

【4】Mattley Y D, Garcia-Rubio L H. Multiwavelength spectroscopy for the detection, identification and quantification of cells[C]. Proceedings of SPIE International Society for Optical Engineering, 2000, 4206: 45-51.

【5】Mourant J R, Campolat M, Brocke C, et al. Light scattering from cells: The contribution of the nucleus and the effects of proliferative status[J]. Journal of Biomedical Optics, 2000, 5(2): 131-137.

【6】Wang L J, Huang C Z. Polarized synchronous light scattering used for differentiating microorganisms[J]. Journal of Southwest University, 2007, 29(7): 28-31.
王立娟, 黄承志. 偏振同步光散射用于微生物区分的研究[J]. 西南大学学报, 2007, 29(7): 28-31.

【7】Wang Y W, Lei H N, Bu M, et al. Distribution characteristics and identification of several typical blood cells under optical phase models[J]. Chinese Journal of Lasers, 2009, 36(10): 2629-2635.
王亚伟, 雷海娜, 卜敏, 等. 几种典型血细胞的光学相位模型及其分布特征与识别方法[J]. 中国激光, 2009, 36(10): 2629-2635.

【8】Tao Z H, Ke K, Shi D Q, et al. Effect of environmental factors on staphyloxanthin biosynthesis based on laser tweezers Raman spectroscopy[J]. Laser & Optoelectronics Progress, 2017, 54(12): 123001.
陶站华, 柯珂, 师德强, 等. 利用光镊拉曼光谱研究环境因素对葡萄球菌黄素生物合成的影响[J]. 激光与光电子学进展, 2017, 54(12): 123001.

【9】Wu Z J, Huang Y X, Wang C, et al. Normalization methods for ethanol Raman spectra quantitative analysis[J]. Spectroscopy and Spectral Analysis, 2010, 30(4): 971-974.
吴正洁, 黄耀熊, 王成, 等. 多种拉曼光谱归一化法对乙醇定量分析的研究[J]. 光谱学与光谱分析, 2010, 30(4): 971-974.

【10】Sun D J, Hu Y H, Gu Y L, et al. Determination and model construction of microbes’ complex refractive index in far infrared band[J]. Acta Physica Sinica, 2013, 62(9): 094218.
孙杜娟, 胡以华, 顾有林, 等. 微生物远红外波段复折射率测定及模型构建[J]. 物理学报, 2013, 62(9): 094218.

【11】Wang J S, Qiao D P, Lu Y Z, et al. Quantitative analysis of laser-induced breakdown spectroscopy in rock by using intensity normalization method[J]. Chinese Journal of Lasers, 2010, 37(1): 225-230.
汪家升, 乔东坡, 陆运章, 等. 强度归一化法定量分析岩石激光诱导击穿光谱[J]. 中国激光, 2010, 37(1): 225-230.

【12】Zhai Y H, Lin Y P, Bai Y H, et al. Determination of oxygen content in chlorine by area normalization method[J]. Chlor-Alkali Industry, 2015, 51(2): 36-38.
翟英花, 林云鹏, 白贤红, 等. 采用面积归一化法测定氯气中氧的含量[J]. 氯碱工业, 2015, 51(2): 36-38.

【13】Wang L, Hu X Q, Zheng Z J, et al. Radiometric calibration tracking for FY-3A/MERSI by joint use of polar stable snow targets[J]. Acta Optica Sinica, 2018, 38(2): 0212003.
王玲, 胡秀清, 郑照军, 等. 联合南北极冰雪目标的FY-3A/MERSI辐射定标跟踪监测[J]. 光学学报, 2018, 38(2): 0212003.

【14】Wang J Y, Zhao N J, Duan J B, et al. Study of rapid species identification of bacteria in water[J]. Spectroscopy and Spectral Analysis, 2015, 35(9): 2634-2638.
王久悦, 赵南京, 段静波, 等. 水体细菌微生物种类快速鉴别方法研究[J]. 光谱学与光谱分析, 2015, 35(9): 2634-2638.

【15】Bohren C F, Huffman D R. Absorption and scattering of sight by small particles[M]. New York: John Wiley & Sons, 1983: 228-338.

【16】Alupoaei C E, Olivares J A, García-Rubio L H. Quantitative spectroscopy analysis of prokaryotic cells: Vegetative cell and spores[J]. Biosensors and Bioelectronics, 2004, 19(8): 893-903.

【17】Mourant J R, Campolat M, Brocke C, et al. Light scattering from cells: The contribution of the nucleus and the effects of proliferative status[J]. Journal of Biomedical Optics, 2000, 5(2): 131-137.

【18】Thormhlen I, Straub J, Grigull U. Refractive index of water and its dependence on wavelength, temperature, and density[J]. Journal of Physical and Chemical Reference Data, 1985, 14(4): 933-945.

【19】Fei Y T. Error theory and data processing[M]. Beijing: China Machine Press, 2015: 78-81.
费业泰. 误差理论与数据处理[M]. 北京: 机械工业出版社, 2015: 78-81.

【20】Hoffmann L D, Bradley G L. Calculus for business, economics, and the social and life science[M]. 6th ed. New York: The McGraw-Hill Companies, 1996.

引用该论文

Hu Yuxia,Zhao Nanjing,Gan Tingting,Duan Jingbo,Meng Deshuo,Liu Jianguo,Liu Wenqing. Normalization of Quantitative Analysis for Bacteria Multi-Wavelength Transmission Spectroscopy in Water[J]. Acta Optica Sinica, 2018, 38(4): 0430001

胡玉霞,赵南京,甘婷婷,段静波,孟德硕,刘建国,刘文清. 水体细菌微生物多波长透射光谱定量分析归一化方法研究[J]. 光学学报, 2018, 38(4): 0430001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF