首页 > 论文 > 光学学报 > 38卷 > 4期(pp:414001--1)

调Q CO2激光功率放大器的输出特性

Output Characteristics of Q-Switched CO2 Laser Power Amplifier

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用描述CO2激光器动力学过程的六温度模型理论,建立了计算调Q CO2激光功率放大器输出特性的数学模型,进行了理论分析和数值计算,并讨论了分光比等参数对输出脉冲特性、输出光谱的影响。结果表明:该调Q CO2激光功率放大器存在临界增益长度和临界光强分束比,低于临界值时无法获得激光输出;该调Q CO2激光功率放大器的输出激光脉冲波形、峰值功率、脉冲宽度、输出光谱与光强分束比、抽运电子数密度等参数有关,光强分束比越小,输出的调Q激光脉冲宽度越大,峰值功率越低;该调Q CO2激光功率放大器利用Q调制的高增益特性,通过控制调Q元件所在的低功率支路可以实现高平均功率的调Q脉冲CO2激光输出,很好地解决了调Q CO2激光功率放大器难以高功率运转的问题。

Abstract

By using the six temperature model theory on the kinetic process in a CO2 laser system, we build a mathematical model to calculate output characteristics of Q-switched CO2 laser power amplifier. Theoretical analysis as well as numerical calculation is carried out, and the effects of parameters such as beam split ratio on output pulse characteristics and output spectra are discussed. The results show that the Q-switched CO2 laser power amplifier has a critical gain length and a critical beam split ratio, below which no laser output can be obtained. The laser pulse waveform, peak power, pulse width, and output spectra of the Q-switched CO2 laser power amplifier are all effected by the beam split ratio and pumping electron density. The less the beam split ratio, the greater the output Q-switched laser pulse width, and the lower the laser peak power. The Q-switched CO2 laser power amplifier utilizes the high gain characteristic of Q modulation. By controlling the low power branch of Q-switched elements, we realize the Q-switched pulse CO2 laser output with high average power. The problem that Q-switched CO2 laser power amplifier is difficult to operate at high power is well solved.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248

DOI:10.3788/aos201838.0414001

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(61475157)

收稿日期:2017-10-18

修改稿日期:2017-11-15

网络出版日期:--

作者单位    点击查看

柯常军:中国科学院电子学研究所, 北京 100190
钟艳红:中国科学院电子学研究所, 北京 100190
李丹阳:中国科学院电子学研究所, 北京 100190中国科学院大学, 北京 100049
万磊:中国科学院电子学研究所, 北京 100190中国科学院大学, 北京 100049
吴谨:中国科学院电子学研究所, 北京 100190

联系人作者:吴谨(jwu@mail.ie.ac.cn)

备注:柯常军(1973—),男,博士,研究员,主要从事红外激光及其应用方面的研究。 E-mail: cjke@mail.ie.ac.cn

【1】Weingarten C, Uluz E, Schmickler A, et al. Glass processing with pulsed CO2 laser radiation[J]. Applied Optics, 2017, 56(4): 777-783.

【2】Meyer B J, Staupendahl G, Müller F A, et al. Sensitive ablation of brittle materials with pulsed CO2 laser radiation[J]. Journal of Laser Application, 2016, 28(1): 012002.

【3】Wlodarczyk K L, Weston N J, Ardron M, et al. Direct CO2 laser-based generation of holographic structures on the surface of glass[J]. Optics Express, 2016, 24(2): 1447-1462.

【4】Kiyko V. Powerful pulsed self-seeding CO2 laser: 9307052[P]. 2016-02-08.

【5】Piltingsrud H V. CO2 laser for lidar applications, producing two narrowly spaced independently wavelength-selectable Q-switched output pulses[J]. Applied Optics, 1991, 30(27): 3952-3963.

【6】Xie J J, Pan Q K, Li D J, et al. Theoretical calculation and experimental study of acousto-optically Q-switched CO2 laser[J]. Chinese Journal of Lasers, 2011, 38(2): 0202004.
谢冀江, 潘其坤, 李殿军, 等. 声光调Q CO2激光器的理论计算和实验研究[J]. 中国激光, 2011, 38(2): 0202004.

【7】Smith K, Thomson R M. Computer modeling of gas lasers[M]. Boston: Springer, 1978: 25-78.

【8】Soukieh M, Ghani B A, Hammadi M. Mathematical modeling of CO2 TEA laser[J]. Optics & Laser Technology, 1999, 30(8): 451-457.

【9】Wu J, Ke C J, Wang D L, et al. Mathematical modeling of tunable TEA CO2 lasers[J]. Optics & Laser Technology, 2007, 39(5): 1033-1039.

【10】Ding C L, Wan C Y. Multifrequency dynamical model of pulsed CO2 lasers[J]. Acta Physica Sinica, 2006, 55(3): 1165-1170.
丁长林, 万重怡. 脉冲CO2激光器的多频动力学模型[J]. 物理学报, 2006, 55(3): 1165-1170.

【11】Midorikawa K, Wakabayashi K, Nakamura K, et al. Discharge parameters of a high-pressure, ultraviolet-preionized, transversely excited CO2 laser[J]. Journal of Applied Physics, 1982, 53(5): 3410-3417.

【12】Tou T Y, Beak K W, Chen Y H. One-dimensional modeling of TEA CO2 lasers[J]. Optics & Laser Technology, 1996, 28(3): 183-186.

【13】Bahrampour A, Ganjovi A A. Theoretical analysis of electrical transient behavior in TEA CO2 laser with dielectric corona pre-ionization[J]. Journal of Physics D, 2003, 36(20): 2487-2497.

【14】Galeev R S, Safioulline R K. Numerical simulation of the processes in fast flow gas discharge CO2 lasers[C]. SPIE, 2004, 5483: 214-223.

【15】Lowke J J, Phelps A V, Irwin B W. Predicted electron transport coefficients and operating characteristics of CO2-N2-He laser mixtures[J]. Journal of Applied Physics, 1973, 44(10): 4664-4671.

【16】Kumar M, Khare J, Nath A K. Numerical solution of Boltzmann transport equation for TEA CO2 laser having nitrogen-lean gas mixtures to predict laser characteristics and gas lifetime[J]. Optics & Laser Technology, 2007, 39(1): 86-93.

【17】Thomson R M, Smith K, Davis A R. Boltz: A code to solve the transport equation for electron distributions and then calculate transport coefficients and vibrational excitation rates in gases with applied fields[J]. Computer Physics Communications, 1976, 11(3): 369-383.

【18】Wu J. Theoretical mode on calculating grating tuned TEA CO2 laser[J]. Acta Optica Sinica, 2004, 24(4): 472-476.
吴谨. 光栅调谐TEA CO2激光器理论计算模型[J]. 光学学报, 2004, 24(4): 472-476.

引用该论文

Ke Changjun,Zhong Yanhong,Li Danyang,Wan Lei,Wu Jin. Output Characteristics of Q-Switched CO2 Laser Power Amplifier[J]. Acta Optica Sinica, 2018, 38(4): 0414001

柯常军,钟艳红,李丹阳,万磊,吴谨. 调Q CO2激光功率放大器的输出特性[J]. 光学学报, 2018, 38(4): 0414001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF