首页 > 论文 > 激光与光电子学进展 > 55卷 > 4期(pp:41901--1)


Theoretical Study of Spectrum Shaping of Chirped Pulse in OPCPA with Angular Spectral Dispersion

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文


研究了小角度情况下基于光谱角色散(ASD)方式的非共线光参量啁啾脉冲放大(OPCPA)实现啁啾激光脉冲频谱整形的方法。详细讨论了角色散率对信号光各频率成分相位失配量、转换效率及放大后频谱分布的影响。当信号光中心波长为800 nm, 带宽为20 nm, 在532 nm抽运作用下, 对耦合波方程组进行了数值模拟。其结果显示: 在最佳角色散率情况下, 采用ASD方式的光参量放大后, 得到了约28 nm带宽的双峰整形频谱。计算结果也表明: 角色散率对整体的转换效率以及放大后整形的频谱分布有较大影响, 适当调节抽运光与信号光之间的时延可调整放大后信号光频谱的频移。整形后的频谱分布可在一定程度上克服增益窄化、光谱红移等效应。


The spectrum shaping approach of chirped laser pulse is studied based on the non-colinear optical parametric chirped pulse amplification (OPCPA) with angular spectral dispersion (ASD). The effect of angular dispersion ratio on the phase mismatching of each signal frequency component, the conversion efficiency and the spectral distribution after amplification is discussed in detail. The coupled wave equations are simulated numerically when signal pulse is pumped by 532 nm with the central wavelength of 800 nm and the bandwidth of 20 nm. The results show that the bimodal spectrum with 28 nm bandwidth is obtained by use of the non-colinear OPCPA with ASD, under the optimal angular dispersion ratio. The results also indicate that the angular dispersion ratio has a considerable effect on the overall conversion efficiency and the shaped spectrum of the signal pulse after the amplification. Furthermore, the frequency-shift of signal spectrum after amplification could be modulated by adjustment of the time-delay variation between the pump and the signal pulse properly. The shaped spectrum is available to compensate the gain narrowing and spectroscopic redshift effect to some extent.









作者单位    点击查看

叶荣:成都师范学院物理与工程技术学院, 四川 成都 611130
阴明:成都理工大学信息科学与技术学院, 四川 成都 610059
吴显云:成都师范学院物理与工程技术学院, 四川 成都 611130
钟哲强:四川大学电子信息学院, 四川 成都 610064


备注:叶荣(1987—), 男, 博士, 讲师, 主要从事超短激光脉冲时域特性方面的研究。yj1987211@163.com

【1】Balzer K, Bauch S, Bonitz M. Time-dependent second-order Born calculations for model atoms and molecules in strong laser fields[J]. Physical Review A, 2010, 82(3): 033427.

【2】Tabak M, Clark D S, Hatchett S P, et al. Review of progress in fast ignition[J]. Physics of Plasmas, 2005, 12(5): 057305.

【3】Ditmire T, Bless S, Dyer G, et al. Overview of future directions in high energy density and high field science using ultra-intense laser[J]. Radiation Physics and Chemistry, 2004, 70(4/5): 535-552.

【4】Yu L L, Xu H, Wang W, et al. Generation of tens of GeV quasi-monoenergetic proton beams from a moving double layer formed by ultraintense lasers at intensity 1021-1023 W·cm-2[J]. New Journal of Physics, 2010, 12(4): 045021.

【5】Cao X W, Zhang L, Yu Y S, et al. Application of micro-optical components fabricated with femtosecond laser[J]. Chinese Journal of Lasers, 2017, 44(1): 0102004.
曹小文, 张雷, 于永森, 等. 飞秒激光制备微光学元件及其应用[J]. 中国激光, 2017, 44(1): 0102004.

【6】Rao S L, Wu P C, Zhang C C, et al. Energy-controllable femtosecond laser fabrication based on spatial light modulator[J]. Chinese Journal of Lasers, 2017, 44(1): 0102008.
饶生龙, 吴培超, 张晨初, 等. 基于空间光调制器的能量可控飞秒激光加工[J]. 中国激光, 2017, 44(1): 0102008.

【7】Hu M N, Ge L C, Zhang J P, et al. Hole-drilling with high depth-diameter ratio using multi-pulse femtosecond laser[J]. Chinese Journal of Lasers, 2016, 43(4): 0403006.
胡梦宁, 葛励成, 张晋平, 等. 多脉冲飞秒激光深小孔的加工[J]. 2016, 43(4): 0403006.

【8】Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449.

【9】Barty C P, Korn G, Paksi F, et al. Regenerative pulse shaping and amplification of ultrabroadband optical pulses[J]. Optics Letters, 1996, 21(3): 219-221.

【10】Leng Y X, Lin L H, Xu Z Z. Spectrum shaping in a Ti∶sapphire regenerative amplifier[J]. Acta Optica Sinica, 2002, 22(2): 170-173.
冷雨欣, 林礼煌, 徐至展. 掺钛蓝宝石再生放大器的光谱整形[J]. 光学学报, 2002, 22(2): 170-173.

【11】Spielmann C, Verluise F, Tournois, P, et al. Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping[J]. Optics Letters, 2000, 25(8): 575-578.

【12】Sung J H, Lee H W, Chang H N, et al. 100-kHz 22-fs Ti∶sapphire regenerative amplification laser with programmable spectral control[J]. Applied Physics B, 2016, 122: 125.

【13】Guo A L, Yang Q W, Zhang F L, et al. Spectrum shaping of chirped pulse[J]. Acta Optica Sinica, 2009, 29(6): 1582-1585.
郭爱林, 杨庆伟, 张福领, 等. 啁啾脉冲的光谱整形[J]. 光学学报, 2009, 29(6): 1582-1585.

【14】Wang S, Zheng W, Zhao L, et al. All-fiber arbitrary and precise pulse spectral shaping[J]. Laser Physics Letters, 2015, 12(4): 045107.

【15】Karpenko S G. Method for compensating the phase-matching dispersion in nonlinear optics[J]. Soviet Journal of Quantum Electronics, 1975, 4(9): 1090-1098.

【16】Trophème B, Boulanger B, Mennerat G. Phase-matching loci and angular acceptance of non-collinear optical parametric amplification[J]. Optics Express, 2012, 20(24): 26176-26183.

【17】Bhar G C, Datta P K, Rudra A M, et al. Tangentially phase-matched efficient difference frequency generation in beta barium borate crystal[J]. Optics Communications, 1994, 105(1): 95-98.

【18】Ross I N. Optical parametric amplification techniques[M]// Brabec T, Kapteyn H. Strong Field Laser Physics. New York: Springer, 2008.

【19】Rotemund F, Petrov V, Noack F. Femtosecond noncollinear parametric amplification in the mid-infrared[J]. Optics Communications, 1999, 169(1): 183-188.

【20】Ross I N, Matousek P, Towrie M, et al. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers[J]. Optics Communications, 1997, 144(1): 125-133.

【21】Kato K. Second-harmonic generation to 2048 A in beta-BaB2O4[J]. IEEE Journal of Quantum Electronics, 1986, 22: 1013.

【22】Ye R, Zhang B, Sun N C. SNR improvement based on non-collinear OPCPA with angular spectral dispersion in BBO crystal[J]. Optics Communications, 2014, 322: 27-31.

【23】Grace E J, Tsangarts C L, New G H C. Competing processes in optical parametric chirped pulse amplification[J]. Optics Communications, 2006, 261(2): 225-230.

【24】Wang P, Zhao H, Wang Z H, et al. Active synchronization of two independent femtosecond and picosecond lasers and sum frequency generation of two laser pulses[J]. Acta Physica Sinica, 2006, 55(8): 4161-4165.
王鹏, 赵环, 王兆华, 等. 皮秒与飞秒激光脉冲的主动同步及和频产生宽带超短激光的研究[J]. 物理学报, 2006, 55(8): 4161-4165.

【25】Li D R, Lü X H, Wu P, et al. Compensation of temporal dispersion for acousto-optical deflector scanning femtosecond laser[J]. Acta Physica Sinica, 2006, 55(9): 4729-4733.
李德荣, 吕晓华, 吴萍, 等. 声光偏转器扫描飞秒激光的时间色散补偿[J]. 物理学报, 2006, 55(9): 4729-4733.

【26】Cao S Y, Wang Q Y, Wang Z, et al. Compensation of spatial dispersion in self-starting mode-locked Ti∶AlO2O3[J]. Journal of Opoelectronics·Laser, 2004, 15(3): 312-314.
曹士英, 王清月, 王专, 等. 自启动飞秒钛宝石激光器空间色散的补偿[J]. 光电子·激光, 2004, 15(3): 312-314.

【27】Su J, Feng G Y, Zou Q H, et al. Dispersion analysis of reflection grism-pair applied to dispersion compensation[J]. Acta Physica Sinica, 2013, 62(1): 014201.
苏娟, 冯国英, 邹其徽, 等. 用于色散补偿的反射型棱删的色散分析[J]. 物理学报, 2013, 62(1): 014201.


Ye Rong,Yin Ming,Wu Xianyun,Zhong Zheqiang. Theoretical Study of Spectrum Shaping of Chirped Pulse in OPCPA with Angular Spectral Dispersion[J]. Laser & Optoelectronics Progress, 2018, 55(4): 041901

叶荣,阴明,吴显云,钟哲强. 光谱角色散OPCPA中啁啾脉冲频谱整形的理论研究[J]. 激光与光电子学进展, 2018, 55(4): 041901

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF