首页 > 论文 > 激光与光电子学进展 > 55卷 > 4期(pp:41007--1)

结合主成分分析的四维块匹配协同滤波三维地震信号去噪

Three Dimensional Seismic Signal Denoising Based on Four-Dimensional Block Matching Cooperative Filtering Combined with Principle Component Analysis

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

四维块匹配协同滤波(BM4D)用于地震信号去噪时, 虽然性能良好, 但需要预知噪声标准差。针对上述问题, 提出结合主成分分析(PCA)噪声估计的BM4D三维地震信号去噪算法。该算法首先用PCA对地震信号进行噪声估计, 然后将估计结果用于BM4D去噪。对人工合成与实际三维地震信号的去噪实验结果表明, 本文算法具有可行性, 既能取得很好的去噪效果, 又能规避BM4D对噪声水平预估值敏感的局限性。与5种噪声估计算法的对比实验表明, 本文方法在噪声估计时间和精度方面均具有优势。

Abstract

Four-dimensional block matching cooperative filtering (BM4D) has a good performance when it is used for seismic signal denoising. But it has to predict noise standard deviation. To overcome this issue , we present a three-dimensional seismic signal denoising algorithm based on BM4D combined with principal component analysis (PCA). We first use PCA to estimate the noise standard deviation of the seismic signal, and then use the result of estimation for BM4D denoising. The experimental results of synthetic and actual 3D seismic signal denoising show that the proposed algorithm is feasible and can not only achieve the good denoising effect, but also avoid the sensitive limitations of noise level estimation. Compared with other five noise estimation algorithms, the experimental results show that the proposed algorithm has advantages in both noise estimation time and accuracy.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP751.1

DOI:10.3788/LOP55.041007

所属栏目:图像处理

基金项目:河北省自然科学基金(E2016202341)、教育部人文社会科学研究规划基金(15YJA630108)

收稿日期:2017-08-25

修改稿日期:2017-10-09

网络出版日期:--

作者单位    点击查看

张欢:河北工业大学电子信息工程学院, 天津市电子材料与器件重点实验室, 天津 300401
池越:河北工业大学电子信息工程学院, 天津市电子材料与器件重点实验室, 天津 300401
周亚同:河北工业大学电子信息工程学院, 天津市电子材料与器件重点实验室, 天津 300401
任婷婷:中国移动河北省分公司, 河北 石家庄

联系人作者:池越(chiyueliuxin@126.com)

备注:张欢(1993—), 女, 硕士研究生, 主要从事智能信息处理、视频与图像处理方面的研究。921076733@qq.com

【1】Su G S,Li C C. Frequency space (3D) F-XYZ domain prediction denoising technology[J].Oil Geophysical Prospecting, 1998, 33(1): 95-103.
苏贵士, 李承楚. 频率空间(三维)F-XYZ域预测去噪技术[J]. 石油地球物理勘探, 1998, 33(1): 95-103.

【2】Zhang H, Chen X H, Yang H Y, et al. Optimal wavelet basis selection method for seismic signals[J].Oil Geophysical Prospecting, 2011, 46(1): 70-75.
张华, 陈小宏, 杨海燕, 等. 地震信号的最优小波基选取方法[J]. 石油地球物理勘探, 2011, 46(1): 70-75.

【3】Tian Y C, Wang X W, Peng G X, et al. Noise suppression technology for wide azimuth seismic data[J].Oil Geophysical Prospecting, 2013, 48(2): 187-191.
田彦灿, 王西文, 彭更新, 等. 宽方位角地震资料噪声压制技术[J]. 石油地球物理勘探, 2013, 48(2): 187-191.

【4】Zhang Z H, Sun C Y, Yao Y Q, et al. Research on the application of 3D curvelet transform to seismic data denoising[J]. Geophysical Prospecting for Petroleum, 2014, 53(4): 421-430.
张之涵, 孙成禹, 姚永强, 等. 三维曲波变换在地震资料去噪处理中的应用研究[J]. 石油物探, 2014, 53(4): 421-430.

【5】Li F, Duan W, Zhao R, et al. Seismic signal to noise ratio improvement with volume τ-p transform in OVT domain[J]. Oil Geophysical Prospecting, 2015, 50(3): 418-423.

【6】Zhang G Z, Chang D K, Wang Y H, et al. Random noise suppression of 3D seismic data based on sparse redundancy representation[J]. Oil Geophysical Prospecting, 2015, 50(4): 600-606.
张广智, 常德宽, 王一惠, 等. 基于稀疏冗余表示的三维地震数据随机噪声压制[J]. 石油地球物理勘探, 2015, 50(4): 600-606.

【7】Chen Y, Huang W, Zhang D, et al. An open-sourse Matlab code package for improved rank-reduction 3D seismic data denoising and reconstruction[J]. Computers & Geosciences, 2016, 95: 59-66.

【8】Peng C, Chang Z, Han C J, et al. Seismic noise decay based on Contourlet transform[J]. Progress in Exploration Geophysics, 2008, 31(4): 274-277.
彭才, 常智, 韩朝军, 等. 基于Contourlet变换的地震噪声衰减[J]. 勘探地球物理进展, 2008, 31(4): 274-277.

【9】Deans S R. The radon transform and some of its application[M]. Mineola, New York: Dover Publications, 1983.

【10】Sabbione J I, Velis D R, Sacchi M D. Microseismic data denoising via an apex-shifted hyperbolic Radon transform[C]// Society of Exploration Geophysicists, SEG Technical Program Expanded Abstracts, 2013: 2155-2161.

【11】Duncan G, Beresford G. Some analyses of 2-D median f-k filters[J]. Geophysics, 1995, 60(4): 1157-1168.

【12】Wang W J, Yu X L,Ma W S, et al. Aspheric interferogram image denoising method based on the improved P-M model and weighed composite median filter[J]. Laser & Optoelectronics Progress, 2016, 53(3): 031002.
王伟佳, 于雪莲, 马文书, 等. 基于改进P-M模型与加权复合型中值滤波的非球面干涉图去噪方法[J]. 激光与光电子学进展, 2016, 53(3): 031002.

【13】Yang Q L, Wu G Z, Zhao X L. Application of 3D anisotropic diffusion filter in seismic data processing[J]. Progress in Geophysics, 2015(5): 2287-2292.
杨千里, 吴国忱, 赵小龙. 三维各向异性扩散滤波在地震数据处理中的应用[J]. 地球物理学进展, 2015(5): 2287-2292.

【14】Zhou C, Liu N W, He T B, et al. Application of wavelet threshold denoising for breath analysis based on laser spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(11): 1111003.
周超, 刘宁武, 何天博, 等. 小波阈值去噪技术在呼吸气体激光光谱诊断中的应用研究[J]. 中国激光, 2017, 44(11): 1111003.

【15】Barducci A, Guzzi D, Marcoionni P, et al. Assessing noise amplitude in remotely sensed images using bit-plane and scatterplot approaches[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8): 2665-2675.

【16】Zoran D, Weiss Y. Scale invariance and noise in natural images[C]// IEEE, International Conference on Computer Vision, IEEE, 2009: 2209-2216.

【17】Hashemi M, Beheshti S. Adaptive noise variance estimation in BayesShrink[J]. IEEE Signal Processing Letters, 2009, 17(1): 12-15.

【18】Pyatykh S, Hesser J, Zheng L. Image noise level estimation by principal component analysis[J]. IEEE Transactions on Image Processing, 2013, 22(2): 687-699.

【19】Ghazal M, Amer A. Homogeneity localization using particle filters with application to noise estimation[J]. IEEE Transactions on Image Processing, 2011, 20(7): 1788-1796.

【20】Xu P, Xiao C, Zhang J C, et al. Denoising method for plant hyperspectral data based on grouped 3D discrete cosine transform dictionary[J]. Acta Optica Sinica, 2017, 37(6): 0630003.
徐平, 肖冲, 张竞成, 等. 基于分组三维离散余弦变换字典的植物高光谱数据去噪方法[J]. 光学学报, 2017, 37(6): 0630003.

【21】Amani S, Gholami A, Niestanak A J. Seismic random noise attenuation via 3D block matching[J]. Journal of Applied Geophysics, 2017, 136: 353-363.

【22】Maggioni M, Katkovnik V, Egiazarian K, et al. Nonlocal transform-domain filter for volumetric data denoising and reconstruction[J]. IEEE Transactions on Image Processing, 2013, 22(1): 119-133.

【23】Aja-Fernandez S, Vegas-Sanchez-Ferrero G, Martin-Fernandez M, et al. Automatic noise estimation in images using local statistics. Additive and multiplicative cases[J]. Image & Vision Computing, 2009, 27(6): 756-770.

【24】Wu Z C, Liu T Y. Wavelet transform methods in seismic data noise attenuation[J]. Progress in Geophysics, 2008(4): 493-499.
吴招才, 刘天佑. 地震数据去噪中的小波方法[J]. 地球物理学进展, 2008(4): 493-499.

引用该论文

Zhang Huan,Chi Yue,Zhou Yatong,Ren Tingting. Three Dimensional Seismic Signal Denoising Based on Four-Dimensional Block Matching Cooperative Filtering Combined with Principle Component Analysis[J]. Laser & Optoelectronics Progress, 2018, 55(4): 041007

张欢,池越,周亚同,任婷婷. 结合主成分分析的四维块匹配协同滤波三维地震信号去噪[J]. 激光与光电子学进展, 2018, 55(4): 041007

被引情况

【1】冯振杰,张欢,张成. 干扰控制K均值序贯泛化二维地震信号去噪. 激光与光电子学进展, 2019, 56(3): 31501--1

【2】郭思阳,林嘉睿,杨凌辉,邾继贵. 室内空间测量定位系统共模误差分析与消除. 激光与光电子学进展, 2019, 56(4): 41201--1

【3】冯振杰,韩卫雪. 基于W加权核范数最小化的地震信号盲去噪. 激光与光电子学进展, 2019, 56(7): 71503--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF