首页 > 论文 > 激光与光电子学进展 > 55卷 > 4期(pp:40001--1)

光纤飞秒激光抽运的非线性光学频率变换研究进展

Research Progress of Nonlinear Frequency Conversion Technology Based on Fiber Femtosecond Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

最近十几年来, 随着飞秒激光技术及非线性晶体制备技术的逐渐成熟, 非线性光学频率变换技术得到了飞速发展。非线性光学频率变换技术的研究旨在突破激光增益介质发射谱线的限制, 使激光器输出波长拓展至传统激光器所无法直接输出的波段范围, 以满足更加广泛的科研及应用需求。到目前为止, 非线性频率变换技术是获得多波长和可调谐飞秒激光的最简捷有效的途径。近些年来, 本研究室在研究光纤飞秒激光器的基础上,开展了基于掺Yb3+光子晶体光纤飞秒激光系统抽运不同介质的非线性频率变换研究, 主要包括:基于块状晶体的光学参量振荡(OPO)技术、基于砷化镓(GaAs)纳米线的频率上转换、基于高非线性光子晶体光纤的超连续谱及三次谐波的产生。简要介绍国内外相关研究成果, 重点综述了本研究室近五年来在上述研究领域的科研成果, 分别介绍了OPO技术、砷化镓(GaAs)纳米线的频率上转换和基于高非线性光子晶体光纤的超连续谱及三次谐波的产生技术的基本原理、研究进展以及前沿应用。

Abstract

Over the last decade, there have been spectacular development in nonlinear frequency conversion techniques, due to the development of improved nonlinear materials together with the evolution of femtosecond pump lasers. Compared with traditional laser sources, nonlinear conversion techniques represent a simple and effective approach to the direct generation of widely tunable and broadband coherent radiation breaking through the limited bandwidth of gain medium. And thus such techniques are of great interests for different applications. Up to now, our group has built up a variety of high power fiber lasers successfully, which provides a cornerstone for the nonlinear frequency conversion. We review the recent process developments in nonlinear frequency conversion techniques driven by photonics crystal femtosecond fiber lasers, especially in the last five years, including optical parametric oscillators (OPOs), excellent frequency up conversion based on GaAs nanowires, supercontinuum generation and third harmonic generation based on highly nonlinear photonic crystal fibers. In addition, basic principles and some advanced applications are also discussed in this review.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437

DOI:10.3788/lop55.040001

所属栏目:综述

基金项目:国家自然科学基金(61535009, 61377041, 11527808)、长江学者与高校创新研究团队(IRT13033)

收稿日期:2017-08-08

修改稿日期:2017-10-19

网络出版日期:--

作者单位    点击查看

赵君:天津大学精密仪器与光电子工程学院超快激光研究室, 光电信息技术教育部重点实验室, 天津 300072
胡明列:天津大学精密仪器与光电子工程学院超快激光研究室, 光电信息技术教育部重点实验室, 天津 300072
范锦涛:天津大学精密仪器与光电子工程学院超快激光研究室, 光电信息技术教育部重点实验室, 天津 300072
刘博文:天津大学精密仪器与光电子工程学院超快激光研究室, 光电信息技术教育部重点实验室, 天津 300072
宋有建:天津大学精密仪器与光电子工程学院超快激光研究室, 光电信息技术教育部重点实验室, 天津 300072
柴路:天津大学精密仪器与光电子工程学院超快激光研究室, 光电信息技术教育部重点实验室, 天津 300072
王清月:天津大学精密仪器与光电子工程学院超快激光研究室, 光电信息技术教育部重点实验室, 天津 300072

联系人作者:柴路(lu_chai@tju.edu.cn)

备注:赵君(1992-), 女, 博士研究生, 主要从事飞秒激光与物质相互作用、非线性光学等方面的研究。E-mail: junzhao@tju.edu.cn

【1】Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering[J]. Physical Review Letters, 1999, 82(20): 4142-4145.

【2】Zhang Z G. Femtosecond laser pulse technology and application[M]. Beijing:Science Press, 2005.
张志刚. 飞秒激光脉冲技术与应用[M]. 北京: 科学出版社, 2005.

【3】Ruebel F, Haag P, L′huillier J A. Synchronously pumped femtosecond optical parametric oscillator with integrated sum frequency generation[J]. Applied Physics Letters, 2008, 92(1): 011122.

【4】Danielius R, Piskarskas A, Stabinis A, et al. Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses[J]. Journal of the Optical Society of America B, 1993, 10(11): 2222-2232.

【5】Cerullo G, de Silvestri S. Ultrafast optical parametric amplifiers[J]. Review of Scientific Instruments, 2003, 74(1): 1-18.

【6】Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics[J]. Physical Review Letters, 1961, 7(4): 118-119.

【7】Maker P D, Terhune R W, Nissenoff M, et al. Effects of dispersion and focusing on the production of optical harmonics[J]. Physical Review Letters, 1962, 8(1): 21-22.

【8】Armstrong J A, Bloembergen N, Ducuing J, et al. Interaction between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939.

【9】Dubietis A, Butkus R, Piskarskas A. Trends in chirped pulse optical parametric amplification[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(2): 163-172.

【10】Petrov V, Rotermund F, Noack F, et al. Generation of high-power femtosecond light pulses at 1 kHz in the mid-infrared spectral range between 3 and 12 μm by second-order nonlinear processes in optical crystals[J]. Journal of Optics A: Pure and Applied Optics, 2001, 3(3): 1-19.

【11】Fermann M E, Hartl I. Ultrafast fiber laser technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 191-206.

【12】Shi S X, Chen G F, Zhao W, et al. Nonlinear optics[M]. Xi′an: Xidian University Press, 2003.
石顺祥, 陈国夫, 赵卫, 等. 非线性光学[M]. 西安: 西安电子科技大学出版社, 2003.

【13】Fox A M. Optical properties of solids[M]. Oxford: Oxford University Press, 2001.

【14】Kumar S C, Samanta G K, Devi K, et al. Single-frequency, high-power, continuous-wave fiber-laser-pumped Ti∶sapphire laser[J]. Applied Optics, 2012, 51(1): 15-20.

【15】Limpert J, Roser F, Schreiber T, et al. High-power ultrafast fiber laser systems[J]. Selected Topics in Quantum Electronics, 2006, 12(2): 233-244.

【16】Wang Q Y, Hu M L, Chai L. Progress in nonlinear optics with photonic crystal fiber[J]. Chinese Journal of Lasers, 2006, 33(1): 57-66.
王清月, 胡明列, 柴路. 光子晶体光纤非线性光学研究新进展[J]. 中国激光, 2006, 33(1): 57-66.

【17】Chai L, Hu M L, Fang X H, et al. Advances in femtosecond laser technologies with photonic crystal fibers[J]. Chinese Journal of Lasers, 2013, 40(1): 0101001.
柴路, 胡明列, 方晓惠, 等. 光子晶体光纤飞秒激光技术研究进展[J]. 中国激光, 2013, 40(1): 0101001.

【18】Huang L L, Hu M L, Fang X H, et al. Generation of 110-W sub-100-fs pulses at 100 MHz by nonlinear amplification based on multicore photonic crystal fiber[J]. IEEE Photonics Journal, 2016, 8(3): 7101307.

【19】Ebrahimzadeh M. Mid-infrared ultrafast and continuous-wave optical parametric oscillators, solid-state mid-infrared laser sources[J]. Springer Berlin Heidelberg, 2003, 89: 184-224.

【20】Giordmaine J A, Miller R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies[J]. Physical Review Letters, 1965, 14(24): 973-976.

【21】Edelstein D C, Wachman E S, Tang C L. Broadly tunable high repetition rate femtosecond optical parametric oscillator[J]. Applied Physics Letters, 1989, 54(18): 1728-1730.

【22】Lin X, Feehan J S, Li S, et al. Yb-fiber amplifier pumped idler-resonant PPLN optical parametric oscillator producing 90 femtosecond pulses with high beam quality[J]. Applied Physics B, 2014, 117(4): 987-993.

【23】Cao J J, Shen D Y, Zheng Y L, et al. Femtosecond OPO based on MgO∶PPLN synchronously pumped by a 532 nm fiber laser[J]. Laser Physics, 2017, 27(5): 055402.

【24】Zhang B G, Yao J Q, Lu Y, et al. High-average-power nanosecond quasi-phase-matched single-pass optical parametric generator in periodically poled lithium niobate[J]. Chinese Physics Letters, 2005, 22(7): 1691-1693.

【25】Xu Z Y, Liang X Y, Li J, et al. Violet to infrared multiwavelength generation in periodically poled lithium niobate pumped by a Q-switched Nd∶YVO4 laser[J]. Chinese Physics Letters, 2002, 19(6): 801-803.

【26】Burra K C, Tang C L, Arbore M A, et al. High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate[J]. Applied Physics Letters, 1997, 70(25): 3341-3343.

【27】O′Connor M V, Watson M A, Shepherd D P, et al. Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser[J]. Optics Letters, 2002, 27(12): 1052-1054.

【28】Gu C L, Hu M L, Zhang L M, et al. High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator[J]. Optics Letters, 2013, 38(11): 1820-1822.

【29】Gu C L, Hu M L, Fan J T, et al. High power tunable femtosecond ultraviolet laser source based on an Yb-fiber-laser pumped optical parametric oscillator[J]. Optics Letters, 2015, 23(5): 6181-6186.

【30】Fan J T, Hu M L, Gu C L, et al. High power femtosecond green-pumped optical parametric oscillator based on lithium triborate[J]. Chinese Journal of Lasers, 2014, 41(9): 0902009.
范锦涛, 胡明列, 顾澄琳, 等. 基于LBO的高功率飞秒绿光抽运的光学参量振荡器[J].中国激光, 2014, 41(9): 0902009.

【31】Kafka J D, Watts M L, Pieterse J W, et al. Synchronously pumped optical parametric oscillators with LiBO3[J]. Journal of the Optical Society of America B, 1995, 12(11): 2147-2157.

【32】Cleff C, Epping J, Gross P, et al. Femtosecond OPO based on LBO pumped by a frequency-doubled Yb-fiber laser-amplifier system for CARS spectroscopy[J]. Applied Physics B, 2011, 103(4): 795-800.

【33】Fan J T, Gu C L, Wang C Y, et al. Extended femtosecond laser wavelength range to 330 nm in a high power LBO based optical parametric oscillator[J]. Optics Express, 2016, 24(12): 13250-13257.

【34】Sun J, Gale B J, Reid D T. Dual-color operation of a femtosecond optical parametric oscillator exhibiting stable relative carrier-envelope phase-slip frequencies[J]. Optics Letters, 2006, 31(13): 2021-2023.

【35】Sun J, Gale B J, Reid D T. Coherent synthesis using carrier-envelope phase-controlled pulses from a dual-color femtosecond optical parametric oscillator[J]. Optics Letters, 2007, 32(11): 1396-1398.

【36】Hegenbarth R, Steinmann A, Sarkisov S, et al. Milliwatt-level mid-infrared(10.5-16.5 μm) difference frequency generation with a femtosecond dual-signal-wavelength optical parametric oscillator[J]. Optics Letters, 2012, 37(17): 3513-3515.

【37】Ruffing B, Nebel A, Wallenstein R. High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range[J]. Applied Physics B, 2001, 72(2): 137-149.

【38】Schrder T, Boller K J, Fix A, et al. Spectral properties and numerical modelling of a critically phase-matched nanosecond LiB3O5 optical parametric oscillator[J]. Applied Physics B, 1994, 58(5): 425-438.

【39】Samanta G K, Ebrahim-Zadeh M. Dual-wavelength, two-crystal, continuous-wave optical parametric oscillator[J]. Optics Letters, 2011, 36(16): 3033-3035.

【40】Gu C L, Hu M L, Fan J T, et al. High-power, dual-wavelength femtosecond LiB3O5 optical parametric oscillator pumped by fiber laser[J]. Optics Letters, 2014, 39(13): 3896-3899.

【41】Feng S Q, Yu D P, Zhao Q, et al. Synthesis, physical properties and application of semiconductor nanowires[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2013, 43(11): 1470-1510.
冯孙奇, 俞大鹏, 赵清, 等. 半导体纳米线--宏观牛顿世界与微观量子世界的理想桥梁[J]. 中国科学: 物理学 力学 天文学, 2013, 43(11): 1470-1510.

【42】Zhang C, Zhang F, Xia T, et al. Low-threshold two-photon pumped ZnO nanowire lasers[J]. Optics Express, 2009, 17(10): 7893-7900.

【43】Johnson J C, Yan H, Yang P, et al. Optical cavity effects in ZnO nanowire lasers and waveguides[J]. The Journal of Physical Chemistry B, 2003, 107(34): 8816-8828.

【44】Wang F, Reece P J, Paiman S, et al. Nonlinear optical processes in optically trapped InP nanowires[J]. Nano Letters, 2001, 11(10): 4149-4153.

【45】Prasanth R, van Vugt L K, Vanmaekelbergh D A M, et al. Resonance enhancement of optical second harmonic generation in a ZnO nanowire[J]. Applied Physics Letters, 2006, 88(18): 181501.

【46】Johnson J C, Choi H J, Knutsen K P, et al. Single gallium nitride nanowire lasers[J]. Nature Materials, 2002, 1(2): 106-110.

【47】Liu R B, Zou B S. Lasing behavior from the condensation of polaronic excitons in a ZnO nanowire[J]. Chinese Physics B, 2011, 20(4): 047104.

【48】Johnson J C, Yan H, Schaller R D, et al. Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires[J]. Nano Letters, 2002, 2(4): 279-283.

【49】Nakayama Y, Pauzauskie P J, Radenovic A, et al. Tunable nanowire nonlinear optical probe[J]. Nature, 2007, 447(7148): 1098-1101.

【50】Zhang Y, Zhou H, Liu S W, et al. Second harmonic whispering gallery modes in ZnO nanotetrapod[J]. Nano Letters, 2009, 9(5): 2109-2112.

【51】Chen R, Crankshaw S, Tran T, et al. Second-harmonic generation from a single wurtzite GaAs nanoneedle[J]. Applied Physics Letters, 2010, 96(5): 051110.

【52】He H, Zhang X Q, Yan X, et al. Broadband second harmonic generation in GaAs nanowires by femtosecond laser sources[J]. Applied Physics Letters, 2013, 103(14): 143110.

【53】Zhang X Q, He H, Fan J T, et al. Sum frequency generation in pure zinc-blende GaAs nanowires[J]. Optics Express, 2013, 21(23): 28432-28437.

【54】Apolonski A, Povazay B, Unterhuber A, et al. The spectral shaping the supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses[J]. Journal of the Optical Society of America B, 2002, 19(9): 2165-2170.

【55】Ranka J K, Windeler R S, Stentz A J. Optical properties of high-delta air-silica microstructure optical fibers[J]. Optics Letters, 2000, 25(11): 796-798.

【56】Fang X H, Hu M L, Liu B W, et al. An all-photonic-crystal-fiber wavelength-tunable source of high-energy sub-100 fs pulses[J]. Optics Communications, 2013, 289: 123-126.

【57】Huang L L.Investigation on optimization of dynamic evolution in a femtosecond laser system based on photonic crystal fiber[M]. Tianjin: Tianjin University, 2016: 73-77.
黄莉莉. 通过脉冲动力学优化提升光子晶体光纤飞秒激光性能的研究[D]. 天津: 天津大学, 2016: 73-77.

【58】Moon S, Kim D Y. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source[J]. Optics Express, 2006, 14(24): 11575-11584.

【59】Cezard N, Dobroc A, Canat G, et al. Supercontinuum laser absorption spectroscopy in the mid-infrared range for identification and concentration estimation of a multi-component atmospheric gas mixture[C]. SPIE, 2011, 81820: 81820V.

【60】Washburn B R, Diddams S A, Newbury N R, et al. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared[J]. Optics Letters, 2004, 29(3): 250-252.

【61】Udem T, Holzwarth R, Hnsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.

【62】Schenkel B, Biegert J, Keller U, et al. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum[J]. Optics Letters, 2003, 28(20): 1987-1989.

【63】Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639.

【64】Holzwarth R, Reichert J, Udem T, et al. Optical frequency metrology and its contribution to the determination of fundamental constants[J]. AIP Conference Proceedings, 2001, 551(1): 58-72.

【65】Alfano R R, Shapiro S L. Emission in the region 4000 to 7000  via four-photon coupling inglass[J]. Physical Review Letters, 1970, 24(11): 584-588.

【66】Alfano R R, Shapiro S L. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Physical Review Letters, 1970, 24(11): 592-594.

【67】Leon-Saval S G, Birks T A, Wadsworth W J, et al. Supercontinuum generation in submicron fiber waveguides[J]. Optics Express, 2004, 12(13): 2864-2869.

【68】Hundertmark H, Kracht D, Wandt D, et al. Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm[J]. Optics Express, 2003, 11(24): 3196-3201.

【69】Corwin K L, Newbury N R, Dudley J M, et al. Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber[J]. Applied Physics B, 2003, 77(2/3): 269-277.

【70】Apolonski A, Povazay B, Unterhuber A, et al. Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses[J]. Journal of the Optical Society of America B, 2002, 19(9): 2165-2170.

【71】Coen S, Chau A H L, Leonhardt R, et al. White-light supercontinuum generation with 60-ps pump pulses in a photoric crystal fiber[J]. Optics Letters, 2001, 26(17): 1356-1358.

【72】Husakou A V, Herrmann J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers[J]. Physical Review Letters, 2001, 87(20): 203901.

【73】Herrmann J, Griebner U, Zhavoronkov N, et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers[J]. Physical Review Letters, 2002, 88(17): 173901.

【74】Husakou A V, Herrmann J. Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers[J]. Journal of the Optical Society of America B, 2002, 19(9): 2171-2182.

【75】Dudley J M, Provino L, Grossard N, et al. Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping[J]. Journal of the Optical Society of America B, 2002, 19(4): 765-771.

【76】Genty G, Lehtonen M, Ludvigsen H, et al. Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers[J]. Optics Express, 2002, 10(20): 1083-1098.

【77】Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Optics Letters, 2000, 25(1): 25-27.

【78】Domachuk P, Wolchover N A, Cronin-Golomb M, et al. The over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Optics Express, 2008, 16(10): 7161-7168.

【79】Stark S P, Travers J C, Russell P S J. Extreme supercontinuum generation to the deep UV[J]. Optics Letters, 2012, 37(5): 770-772.

【80】Huang L L, Hu M L, Fang X H, et al. Intermodal Cherenkov radiation between two transmission bandgaps in an all-solid PBG fiber[J]. IEEE Photonics Technology Letters, 2014, 26(19): 1968-1971.

【81】Fang X H, Hu M L, Li Y F, et al. The numerical analysis for structure optimization of seven-core photonic crystal talent[J]. Acta Physica Sinica, 2009, 58(4): 2495-2500.

【82】Fang X H, Hu M L, Huang L L, et al. The multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber[J]. Optics Letters, 2012, 37(12): 2292-2294.

【83】Omenetto F G, Taylor A J, Moores M D, et al. Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber[J]. Optics Letters, 2001, 26(15): 1158-1160.

【84】Serebryannikov E E, Fedotov A B, Zheltikov A M, et al. Third-harmonic generation by Raman-shifted solitons in a photonic-crystal fiber[J]. Journal of the Optical Society of America B, 2006, 23(9): 1975-1979.

【85】Konorov S O, Fedotov A B, Serebryannikov E E, et al. Phase-matched coherent anti-Stokes Raman scattering in isolated air-guided modes of hollow photonic-crystal fibers[J]. Journal of Raman Spectroscopy, 2005, 36(2): 129-133.

【86】Fedotov A B, Voronin A A, Serebryannikov E E, et al. Multifrequency third-harmonic generation by red-shifting solitons in a multimode photonic-crystal fiber[J]. Physical Review E, 2007, 75(1): 016614.

【87】Naumov A N, Fedotov A B, Zheltikov A M, et al. Enhanced χ(3) interactions of unamplified femtosecond Cr∶ forsterite laser pulses in photonic-crystal fibers[J]. Journal of the Optical Society of America B, 2002, 19(9): 2183-2190.

【88】Zheltikov A M. Third-harmonic generation with no signal at 3ω[J]. Physical Review A, 2005, 72(4): 043812.

【89】Liu B W, Hu M L, Wang S J, et al. All-photonic-crystal-fiber coherent black-light source[J]. Optics Letters, 2010, 35(23): 3958-3960.

【90】Teng H, Chai L, Wang Q Y, et al. Optimization of broadband third-harmonic UV generation in highly nonlinear photonic crystal fiber[J]. Acta Physica Sinica, 2017, 66(4): 044205.
滕欢, 柴路, 王清月, 等. 高非线性光子晶体光纤中优化产生宽带紫外三次谐波[J]. 物理学报, 2017, 66(4): 044205.

引用该论文

Zhao Jun,Hu Minglie,Fan Jintao,Liu Bowen,Song Youjian,Chai Lu,Wang Qingyue. Research Progress of Nonlinear Frequency Conversion Technology Based on Fiber Femtosecond Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(4): 040001

赵君,胡明列,范锦涛,刘博文,宋有建,柴路,王清月. 光纤飞秒激光抽运的非线性光学频率变换研究进展[J]. 激光与光电子学进展, 2018, 55(4): 040001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF