首页 > 论文 > 光学学报 > 38卷 > 5期(pp:0528001--1)

基于短波红外遥感影像的船只自动检测方法

Automatic Detection Method of Ships Based on Shortwave Infrared Remote Sensing Images

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对近海、内河场景中船只检测准确性低的问题,提出了一种基于短波红外遥感影像实现水体分割和船只自动检测的方法。利用水体在短波红外波段反射率低的特点,采取阈值分割和形态学处理的方法,从影像中快速准确地提取水体区域;使用视觉显著模型搜索水面目标,提取候选目标的图像切片;对可能存在的伪目标,使用灰度分布直方图描述目标切片的灰度分布特征,并结合梯度方向信息通过阈值判别的方法去除伪目标。结果表明,该方法能高效检测近海、内河中不同尺寸的船只目标;显著性检测共获得279个候选目标,经目标鉴别步骤检测出142个真实目标中的138个,虚警率小于6%,召回率大于97%。

Abstract

Aiming at the problem of the ship detection with a low accuracy in the offshore and inland river scenes, a method based on shortwave infrared multispectral remote sensing images is proposed to realize water segmentation and automatic detection of ship. Based on the low reflectance characteristic of water area in the shortwave infrared frequency range, the water area is rapidly and accurately extracted from the images by using the threshold segmentation and morphological processing. Then, the image chips of candidate targets are extracted by using the visual saliency model for searching the targets in the water areas. As for the possible existence of phony targets, the gray-scale distribution histogram is proposed to describe the characteristics of gray-scale distribution of the target chips, which are combined with the gradient direction information to eliminate phony targets by the method of threshold constraint. The results show that the proposed method can efficiently detect the ship targets with different sizes in offshore and inland rivers. 279 candidate targets are obtained after the saliency detection and 138 of 142 true targets are detected after the target discrimination step. The false discovery rate is less than 6% and the recall rate is higher than 97%.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP751

DOI:10.3788/AOS201838.0528001

所属栏目:遥感与传感器

基金项目:国家自然科学基金青年基金(61505203)、吉林省优秀青年人才基金(20170520166JH)、中国科学院青年创新促进会专项

收稿日期:2017-10-10

修改稿日期:2017-11-24

网络出版日期:--

作者单位    点击查看

鲍松泽:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
钟兴:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033长光卫星技术有限公司吉林省卫星遥感应用技术重点实验室, 吉林 长春 130102
朱瑞飞:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033长光卫星技术有限公司吉林省卫星遥感应用技术重点实验室, 吉林 长春 130102
于树海:长光卫星技术有限公司吉林省卫星遥感应用技术重点实验室, 吉林 长春 130102
于野:中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033中国科学院大学, 北京 100049
李兰民:中国空间技术研究院山东航天电子技术研究所, 山东 烟台 264670

联系人作者:钟兴(ciomper@163.com)

备注:鲍松泽(1992-),男,博士研究生,主要从事遥感图像处理方面的研究。E-mail: baosongze@126.com

【1】Cheng D, Meng G, Xiang S, et al. Efficient sea-land segmentation using seeds learning arid edge directed graph cut[J]. Neurocomputing, 2016, 207: 36-47.

【2】Wang D, Cui X, Xie F, et al. Multi-feature sea-land segmentation based on pixel-wise learning for optical remote-sensing imagery[J]. International Journal of Remote Sensing, 2017, 38(15): 4327-4347.

【3】Proia N, Pagé V. Characterization of a Bayesian ship detection method in optical satellite images[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2): 226-230.

【4】Corbane C, Najman L, Pecoul E, et al. A complete processing chain for ship detection using optical satellite imagery[J]. International Journal of Remote Sensing, 2010, 31(22): 5837-5854.

【5】Yang G, Li B, Ji S, et al. Ship detection from optical satellite images based on sea surface analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3): 641-645.

【6】Yang F, Xu Q, Li B. Ship detection from optical satellite images based on saliency segmentation and structure-LBP feature[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5): 602-606.

【7】Yin Y, Liu N, Li C, et al. Coarse-to-fine ship detection using visual saliency fusion and feature encoding for optical satellite images[C]. International Conference on Audio, Language and Image Processing, 2016: 705-710.

【8】Shi Z, Yu X, Jiang Z, et al. Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4511-4523.

【9】Lin H, Shi Z, Zou Z. Maritime semantic labeling of optical remote sensing images with multi-scale fully convolutional network[J]. Remote Sensing, 2017, 9(5): 480.

【10】Zou Z, Shi Z. Ship detection in spaceborne optical image with SVD networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5832-5845.

【11】Qi S X, Ma J, Lin J, et al. Unsupervised ship detection based on saliency and S-HOG descriptor from optical satellite images[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(7): 1451-1455.

【12】Xu F, Liu J, Sun M, et al. A hierarchical maritime target detection method for optical remote sensing imagery[J]. Remote Sensing, 2017, 9(3): 280.

【13】Wang H L, Zhu M, Lin C B, et al. Ship detection in optical remote sensing image based on visual saliency and AdaBoost classifier[J]. Optoelectronics Letters, 2017, 13(2): 151-155.

【14】Wang M. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations[J]. Applied Optics, 2007, 46(9): 1535-1547.

【15】Sun L, Mi X, Wei J, et al. A cloud detection algorithm-generating method for remote sensing data at visible to short-wave infrared wavelengths[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 124: 70-88.

【16】Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.

【17】Guo C L, Qi M, Zhang L M. Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2008: 1-8.

【18】Li J, Levine M D, An X, et al. Visual saliency based on scale-space analysis in the frequency domain[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 996-1010.

【19】Xu F, Liu J H, Zeng D D, et al. Detection and identification of unsupervised ships and warships on sea surface based on visual saliency[J]. Optics and Precision Engineering, 2017, 25(5): 1300-1311.
徐芳, 刘晶红, 曾冬冬, 等. 基于视觉显著性的无监督海面舰船检测与识别[J]. 光学 精密工程, 2017, 25(5): 1300-1311.

【20】Guo C, Zhang L. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression[J]. IEEE Transactions on Image Processing, 2010, 19(1): 185-198.

引用该论文

Bao Songze,Zhong Xing,Zhu Ruifei,Yu Shuhai,Yu Ye,Li Lanmin. Automatic Detection Method of Ships Based on Shortwave Infrared Remote Sensing Images[J]. Acta Optica Sinica, 2018, 38(5): 0528001

鲍松泽,钟兴,朱瑞飞,于树海,于野,李兰民. 基于短波红外遥感影像的船只自动检测方法[J]. 光学学报, 2018, 38(5): 0528001

被引情况

【1】黎经元,厉小润,赵辽英. 基于边缘线分析与聚合通道特征的港口舰船检测. 光学学报, 2019, 39(8): 815004--1

【2】朱天佑,黄凌锋,董峰,龚惠兴. 基于轻量级残差网络的红外遥感船只检测. 光学学报, 2020, 40(1): 111018--1

【3】杨斌,王翔. 基于深度残差去噪网络的遥感融合图像质量提升. 激光与光电子学进展, 2019, 56(16): 161009--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF