首页 > 论文 > 激光与光电子学进展 > 55卷 > 5期(pp:51701--1)

局部心血管计算机断层扫描提取算法在病灶辅助诊断中的研究与实现

Research and Realization of Local Cardiovascular Computed Tomography Extraction Algorithm in Lesion Assisted Diagnosis

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了在影像学检查中实时交互地提取病灶血管的四维计算机断层扫描(CT)影像,提出了一种思维进化算法(MEA)优化的并行区域生长算法;MEA优化的基于三级线程处理队列的并行区域生长算法能够通过自我进化避免局部最优,提高了收敛速度和血管分割精度,借助可视化工具包(VTK)和计算机图形图像类库,实现交互式心脏CT局部任意血管病灶的提取和四维可视化。结果表明:局部感兴趣血管10个时相的提取时间大大缩短,体绘制速度大幅提升,局部血管提取数据的每秒帧数(FPS)可达到30左右,如果在显示过程中有旋转、缩小、放大等交互操作,会使数据的FPS减至21左右,但仍能满足心血管的实时显示;借助优化算法实现心肌局部血管区域的提取,能辅助医生观察病人心血管疾病的病灶区域,可为诊断心血管疾病提供直观、有效的可视化依据。

Abstract

To extract four-dimensional computed tomography (CT) images of lesion blood vessels with real-time interaction in imaging examination, we propose a parallel region growing algorithm with optimized mind evolutionary algorithm (MEA). The parallel region growing algorithm with optimized MEA based on the three-level thread processing queue can avoid local optimum through self-evolution, and can improve convergence speed and blood vessel segmentation accuracy. Any part of the interactive cardiac lesion vascular extraction and four-dimensional visualization can be achieved with the aids of the visualization toolkit (VTK) and computer graphics library. The results show that extraction time and volume rendering velocity with ten phases of local blood vessels of interest are significantly improved, and frames per second (FPS) of local blood vessel extraction can reach about 30. If interactive manipulations such as rotation, shrinkage, and enlargement appear in the display process, the FPS will decrease to about 21, but the real-time display of cardiovascular can be obtained successfully. The local cardiovascular regional extraction technique can assist doctors to observe the lesion area of cardiovascular disease, and provide an intuitive and effective visual basis for the diagnosis of cardiovascular disease.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:R445.3

DOI:10.3788/lop55.051701

所属栏目:医用光学与生物技术

基金项目:国家自然科学基金(61771266,81571753)、内蒙古科技大学创新基金(2014QDL045)、包头市青年创新人才项目(NGII20170705)

收稿日期:2017-09-22

修改稿日期:2017-10-31

网络出版日期:--

作者单位    点击查看

任国印:内蒙古科技大学信息工程学院, 内蒙古 包头 014010
吕晓琪:内蒙古科技大学信息工程学院, 内蒙古 包头 014010
杨楠:包头医学院外语系, 内蒙古 包头 014010
喻大华:内蒙古科技大学信息工程学院, 内蒙古 包头 014010

联系人作者:任国印(renguoyin@imust.edu.cn)

备注:任国印(1985-),男,硕士,讲师,主要从事医学图像处理方面的研究。E-mail: renguoyin@imust.edu.cn

【1】O′Brien J F, Ezquerra N F. Automated segmentation of coronary vessels in angiographic image sequences utilizing temporal, spatial, and structural constraints[J]. Visualization in Biomedical Computing, 1994, 14(2): 657-662.

【2】Schmitt H, Grass M, Rasche V, et al. An X-ray-based method for the determination of the contrast agent propagation in 3-D vessel structures[J]. IEEE Transactions on Medical Imaging, 1996, 15(3): 377-379.

【3】Li X L, Zhou G H, Luo S X. Simplified fuzzy connected approach for segmentation of vessel images[J]. Journal of Computer-Aided Design & Computer Graphics, 2003, 15(10): 1224-1229.
李雪丽, 周果宏, 罗述谦. 用于血管图像分割的简化模糊连接算法[J]. 计算机辅助设计与图形学学报, 2003, 15(10): 1224-1229.

【4】Kang Y H, Li W J. Application of improved genetic algorithm in medical image segmentation[J]. Information & Communications, 2015(4): 38-39.
康一鹤, 李文俊. 改进型遗传算法在医学图像分割中的应用[J]. 信息通信, 2015(4): 38-39.

【5】Wang X. Based on genetic algorithm of medical image segmentation technology research[D]. Changchun: Changchun University of Science and Technology, 2013.
王雪. 基于遗传算法的医学图像分割技术的研究[D]. 长春: 长春理工大学, 2013.

【6】Sun C Y, Xie K M, Cheng M Q. Mind-evolution-based machine learning framework and new development[J]. Journal of Taiyuan University of Technology, 1999, 30(5): 453-457.
孙承意, 谢克明, 程明琦. 基于思维进化机器学习的框架及新进展[J]. 太原理工大学学报, 1999, 30(5): 453-457.

【7】Sheng B. A three-dimensional threshold image segmentation method based on mind evolutionary algorithm[J]. Electronic Quality, 2016(5): 66-70.
盛彬. 基于思维进化算法的三维阈值图像分割[J]. 电子质量, 2016(5): 66-70.

【8】Wang C L, Sun C Y. A study of convergence of mind-evolution-based machine learning[J]. Journal of Computer Research & Development, 2000, 37(2): 838-842.
王川龙, 孙承意. 基于思维进化的MEBML算法的收敛性研究[J]. 计算机研究与发展, 2000, 37(2): 838-842.

【9】Yu J, Wang Z, Ji T M, et al. Wind power prediction research based on mind evolutionary algorithm[J]. Computing Technology and Automation, 2017, 36(2): 95-99.
俞俊, 王召, 籍天明, 等. 基于思维进化算法的风电功率预测研究[J]. 计算机技术与自动化, 2017, 36(2): 95-99.

【10】Ma C X,Hu J J,Yan B. Optimization of fan-beam CT filtered back projection reconstruction algorithm[J]. Laser & Optoelectronics Progress, 2012, 49(9): 091103.
马晨欣, 胡君杰, 闫镔. CT扇形束滤波反投影图像重建算法优化[J]. 激光与光电子学进展, 2012, 49(9): 091103.

【11】Xie Z N, Zheng D, Chen J Y,et al. A tumor segmentation method of improved Chan-Vase model for liver cancer ablation computed tomography image[J]. Laser & Optoelectronics Progress, 2017, 54(2): 021702.
谢志南, 郑东, 陈嘉耀, 等. 改进Chan-Vese模型的肝癌消融CT图像肿块分割方法[J]. 激光与光电子学进展, 2017, 54(2): 021702.

【12】Hui Y, Wu J S, Yu B, et al. Construction and biomechanical analysis of integrated three-dimensional optical model of L3-L4 segment of spine[J]. Chinese Journal of Lasers, 2017, 44(7): 0707001.
惠宇, 武君胜, 鱼滨, 等. 脊柱L3~L4段的一体化三维光学模型构建及其生物力学分析[J]. 中国激光, 2017, 44(7): 0707001.

【13】Lu K Z, Peng R, Lin X H. Parallel algorithm of region growing based on multi-level queue[J]. Computer Applications, 2008, 28(2): 446-447, 451.
陆克中, 彭蓉, 林晓辉. 一种基于多级队列的并行区域生长算法[J]. 计算机应用, 2008, 28(2): 446-447, 451.

【14】Wang S K, Pan J X, Chen P. Adaptive segmentation algorithm for CT image sequence based on structure continuity as prior information[J]. Laser & Optoelectronics Progress, 2016, 53(11): 111006.
王苏恺, 潘晋孝, 陈平. 基于结构连续先验的CT图像序列自适应分割算法[J]. 激光与光电子学进展, 2016, 53(11): 111006.

【15】Li X M. A mind evolutionary algorithm including genetic operator[J]. Digital Technology and Applications, 2015(12): 140-141, 143.
李晓敏. 一种包含遗传算子的思维进化算法[J]. 数字技术与应用, 2015(12): 140-141, 143.

【16】Ma J L, Cui Z M, Wu J, et al. Novel ROI segmentation method using region growing[J]. Application Research of Computers, 2008, 25(5): 1582-1585.
马建林, 崔志明, 吴健. 一种新的基于区域生长的ROI分割算法[J]. 计算机应用研究, 2008, 25(5): 1582-1585.

【17】Wu W, Guo J Q, An S Y, et al. Application of mind evolutionary algorithm optimized neural network model to predict the incidence of hemorrhagic fever with renal syndrome[J]. Chinese Journal of Health Statistics, 2016, 33(1): 27-30.
吴伟, 郭军巧, 安淑一, 等. 使用思维进化算法优化的神经网络建立肾综合征出血热预测模型[J]. 中国卫生统计, 2016, 33(1): 27-30.

【18】Yang Y R, Dai Y. Evaluation of the effect on eye aberration on retinal imaging quality based on the root mean square error and correlation coefficient[J]. Acta Optica Sinica, 2017, 37(3): 0333001.
杨彦荣, 戴云. 基于均方根误差和相关系数评价人眼像差对视网膜像质的影响[J]. 光学学报, 2017, 37(3): 0333001.

引用该论文

Ren Guoyin,Lü Xiaoqi,Yang Nan,Yu Dahua. Research and Realization of Local Cardiovascular Computed Tomography Extraction Algorithm in Lesion Assisted Diagnosis[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051701

任国印,吕晓琪,杨楠,喻大华. 局部心血管计算机断层扫描提取算法在病灶辅助诊断中的研究与实现[J]. 激光与光电子学进展, 2018, 55(5): 051701

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF