ITO薄膜表面等离子体共振波长的可控调节
Controllable Modulation of Surface Plasmon Resonance Wavelength of ITO Thin Films
摘要
采用直流磁控溅射的方式,在浮法玻璃衬底上制备了氧化铟锡(ITO)薄膜。通过改变薄膜沉积时间,制备出不同厚度的ITO薄膜。随着膜厚由16 nm逐渐增大到271 nm,其结晶程度得到增强,对应的载流子浓度由4.79×1020 cm-3增大到2.41×1021 cm-3,表面等离子体共振(SPR)波长由1802 nm逐渐蓝移到1204 nm,实现了近红外区域SPR波长较宽范围的可控调节。采用Drude自由电子气模型,对不同厚度ITO薄膜的SPR波长进行了理论计算,进一步证明了SPR波长的有效调节取决于膜厚对载流子浓度的影响作用。
Abstract
The tin-doped indium oxide (ITO) thin films are fabricated on the float glass substrates by the direct current (DC) magnetron sputtering method. The ITO thin films with different thicknesses are fabricated by changing the deposition time. As the film thickness gradually increases from 16 nm to 271 nm, the crystallinity is enhanced and the corresponding carrier concentration is increased from 4.79×1020 cm-3 to 2.41 ×1021 cm-3. Thus the corresponding surface plasmon resonance (SPR) wavelength blueshifts from 1802 nm to 1204 nm. The controllable modulation of near infrared SPR wavelength within a relatively broad range is realized. The SPR wavelength of the ITO films with different film thicknesses are theoretically calculated by using the Drude free electron gas model, which further confirms that the effective modulation of SPR wavelength is determined by the influence of film thickness on carrier concentration.
中图分类号:O531
所属栏目:材料
基金项目:国家自然科学基金(61404009)、吉林省科技发展计划(20170520118JH)、长春理工大学校创 新基金(XJJLG-2016-11)
收稿日期:2018-01-12
修改稿日期:2018-01-17
网络出版日期:--
作者单位 点击查看
王新伟:长春理工大学材料科学与工程学院, 吉林 长春 130022
李如雪:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
王登魁:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
方铉:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
房丹:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
张玉苹:吉林大学理论化学研究所超分子结构与材料国家重点实验室, 吉林 长春 130022
孙秀平:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
王晓华:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
魏志鹏:长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
联系人作者:王新伟(wxw4122@cust.edu.cn)
备注:蔡昕旸(1994-),女,硕士研究生,主要从事纳米材料与低维物理方面的研究。E-mail: 978784701@qq.com
【1】Lu D, Liu Z. Hyperlenses and metalenses for far-field super-resolution imaging[J]. Nature Communications, 2012, 3(6): 1205.
【2】Kaur G, Yadav K L, Mitra A.Localized surface plasmon induced enhancement of electron-hole generation with silver metal island at n-Al∶ZnO/p-Cu2O heterojunction[J]. Applied Physics Letters, 2015, 107(5): 053901.
【4】Hao D, Hu C, Grant J, et al. Hybrid localized surface plasmon resonance and quartz crystal microbalance sensor for label free biosensing[J]. Biosensors and Bioelectronics, 2018, 100: 23-27.
【5】Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.
【8】Kanehara M, Koike H, Yoshinaga T, et al. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region[J]. Journal of the American Chemical Society, 2009, 131(49): 17736-17737.
【10】Jia R, Lin G, Zhao D, et al. Sandwich-structured Cu2O photodetectors enhanced by localized surface plasmon resonances[J]. Applied Surface Science, 2015, 332: 340-345.
【11】Bai Y, Gao C, Yin Y. Fully alloyed Ag/Au nanorods with tunable surface plasmon resonance and high chemical stability[J]. Nanoscale, 2017, 9(39): 14875-14880.
【12】You J B, Zhang X W, Dong J J, et al. Localized-surface-plasmon enhanced the 357 nm forward emission from ZnMgO films capped by Pt nanoparticles[J]. Nanoscale Research Letters, 2009, 4(10): 1121-1125.
【15】Karasawa T, Miyata Y. Electrical and optical properties of indium tin oxide thin films deposited on unheated substrates by dc reactive sputtering[J]. Thin Solid Films, 1993, 223(1): 135-139.
【18】Boltasseva A, Atwater H A. Low-loss plasmonic metamaterials[J]. Science, 2011, 331(6015): 290-291.
【19】Brewer S H, Franzen S. Indium tin oxide plasma frequency dependence on sheet resistance and surface adlayers determined by reflectance FTIR spectroscopy[J]. The Journal of Physical Chemistry B, 2002, 106(50): 12986-12992.
【20】Kamakura R, Fujita K, Murai S, et al. Controlling plasmonic properties of epitaxial thin films of indium tin oxide in the near-infrared region[J]. Journal of Physics, 2015, 619(1): 012056.
【21】Fang X, Mak C L, Zhang S, et al. Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region[J]. Journal of Physics: Condensed Matter, 2016, 28(22): 224009.
【22】Tuo Y F, Wu Y P, Huang M, et al. The surface plasmon resonance absorption of indium tin oxide nanoparticles and its control[J]. Advanced Materials Research, 2015, 1118: 160-165.
【23】Hao L, Diao X, Xu H, et al. Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates[J]. Applied Surface Science, 2008, 254(11): 3504-3508.
【24】West P R, Ishii S, Naik G V, et al. Searching for better plasmonic materials[J]. Laser & Photonics Reviews, 2010, 4(6): 795-808.
【25】Gao M Z, Job R, Xue D S, et al. Thickness dependence of resistivity and optical reflectance of ITO films[J]. Chinese Physics Letters, 2008, 25(4): 1380-1383.
引用该论文
Cai Xinyang,Wang Xinwei,Li Ruxue,Wang Dengkui,Fang Xuan,Fang Dan,Zhang Yuping,Sun Xiuping,Wang Xiaohua,Wei Zhipeng. Controllable Modulation of Surface Plasmon Resonance Wavelength of ITO Thin Films[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051602
蔡昕旸,王新伟,李如雪,王登魁,方铉,房丹,张玉苹,孙秀平,王晓华,魏志鹏. ITO薄膜表面等离子体共振波长的可控调节[J]. 激光与光电子学进展, 2018, 55(5): 051602
被引情况
【1】郭德双,陈子男,王登魁,唐吉龙,方铉,房丹,林逢源,王新伟,魏志鹏. 退火温度对铝掺杂氧化锌薄膜晶体质量及光电性能的影响. 中国激光, 2019, 46(4): 403002--1
【2】聂立霞,张燕,鲜仕林,秦俊,王会丽,毕磊. 基于高迁移率透明导电氧化物的高速、低插入损耗硅基光波导移相器研究. 激光与光电子学进展, 2019, 56(15): 152302--1
【3】殷艺,刘志坚,王赛杰,武森,严志军,潘新祥. 基于无掩模光刻的高精度ITO电极湿法刻蚀工艺研究. 激光与光电子学进展, 2020, 57(3): 32202--1
【4】于远方,倪振华. 表面等离激元热电子光电探测. 激光与光电子学进展, 2019, 56(20): 202403--1