首页 > 论文 > 中国激光 > 45卷 > 6期(pp:602004--1)

熔石英元件修复点交联分布对光传输影响的数值模拟

Numerical Simulation of Effect of Cross-Linked Distribution of Mitigated Pits in Fused Silica Elements on Light Transport

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

建立了熔石英元件修复点交联分布数值模拟模型,利用标量衍射理论结合快速傅里叶变换算法,分析了351 nm激光辐照下修复区域对下游光传输的调制影响。研究结果表明,交联修复区域对下游光传输的调制主要受修复点间交联程度的影响,随着交联程度的增大,调制光场极大值迅速增大后快速减小,其分布位置先逐渐靠近后迅速远离修复元件出光面。光场调制随着传输距离的增大先快速增大后迅速减小。优化交联修复区域形貌结构参数可有效避免下游元件发生级联损伤。

Abstract

A numerical simulation model based on the cross-linked distribution of mitigated pits in the fused silica elements is proposed. The modulation effect of the mitigation area on the downstream light transport under the 351 nm laser irradiation is studied by the scalar diffraction theory and the fast Fourier transform algorithm. The results indicate that the modulation of the cross-linked mitigation area on the downstream light transport is mainly determined by the cross-linking degree of mitigated pits. With the increase of cross-linking degree, the local maximum of light modulation first increases rapidly and then decreases very fast, and the corresponding location first approaches and then is far away from the output surface of the mitigated element. With the increase of propagation distance, the light modulation first increases rapidly and then decreases very fast. The parameter optimization of the morphological structure of the mitigation area can avoid effectively the cascading damages among the downstream elements.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/cjl201845.0602004

所属栏目:激光制造

收稿日期:2017-11-27

修改稿日期:2018-01-08

网络出版日期:--

作者单位    点击查看

白阳:中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
蒋晓龙:中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
蒋一岚:中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
张丽娟:中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
张传超:中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
廖威:中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
陈静:中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
周海:中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
袁晓东:中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900

联系人作者:陈静(chenjing_19901102@163.com)

备注:白阳(1990—),男,硕士,研究实习员,主要从事光与物质相互作用、光传输方面的研究。 E-mail: by201106@163.com

【1】Rubenchik A M, Feit M D. Initiation, growth and mitigation of UV laser induced damage in fused silica[C]. SPIE, 2002, 4679: 79-95.

【2】Merkle L D, Kitriotis D. Temperature dependence of laser-induced bulk damage in SiO2 and borosilicate glass[J]. Physical Review B, 1988, 38(6): 1473-1482.

【3】Feit M D, Rubenchik A M. Intrinsic laser-induced breakdown of silicate glasses[C]. SPIE, 2002, 4679(10): 321-330.

【4】Bercegol H, Bouchut P, Lamaignère L, et al. The impact of laser damage on the lifetime of optical components in fusion lasers[C]. SPIE, 2004, 5273: 312-324.

【5】Bass I L, Draggoo V G, Guss G M, et al. Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser[C]. SPIE, 2006, 6261: 62612A.

【6】Bass I L,Guss G M, Nostrand M J, et al. An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser[C]. SPIE, 2010, 7842: 784220.

【7】Adams J J, Bolourchi M, Bude J D, et al. Results of applying a non-evaporative mitigation technique to laser-initiated surface damage on fused-silica[C]. SPIE, 2010, 7842: 784223.

【8】Feit M D, Rubenchik A M. Laser intensity modulation by nonabsorbing defects[C]. SPIE, 1997, 3047: 971-977.

【9】Brusasco R M, Penetrante B M, Butler J A, et al. Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica[C]. SPIE, 2002, 4679: 40-47.

【10】Guss G, Bass I, Draggoo V, et al. Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 μm wavelength laser[C]. SPIE, 2006, 6403: 64030M.

【11】Runkel M, Hawley-Fedder R, Widmayer C, et al. A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optics[C]. SPIE, 2005, 5991: 59912H.

【12】Matthews M J, Bass I L, Guss G M, et al. Downstream intensification effects associated with CO2 laser mitigation of fused silica[C]. SPIE, 2007, 6720: 67200A.

【13】Li L, Xiang X, Zu X T, et al. Incident laser modulation of a repaired damage site with a rim in fused silica rear subsurface[J]. Chinese Physics B, 2012, 21(4): 044212.

【14】Bai Y, Zhang L J, Liao W, et al. Study of downstream light intensity modulation induced by mitigated damage pits of fused silica using numerical simulation and experimental measurements[J]. Acta Physica Sinica, 2016, 65(2): 024205.
白阳, 张丽娟, 廖威, 等. 熔石英损伤修复坑下游光场调制的数值模拟与实验研究[J]. 物理学报, 2016, 65(2): 024205.

【15】Jiang Y, Liu C M, Luo C S, et al. Mitigation of laser damage growth in fused silica by using a non-evaporative technique[J]. Chinese Physics B, 2012, 21(5): 054216.

【16】Bourgeade A, Donval T, Gallais L, et al. Modeling surface defects in fused silica optics for laser wave propagation[J]. Journal of the Optical Society of America B, 2015, 32(4): 655-663.

【17】Bai Y, Liao W, Zhang L J, et al. Effects of different kinds of mitigated pits on transport of laser beam[J]. High Power Laser and Particle Beams, 2016, 28(5): 051002.
白阳, 廖威, 张丽娟, 等. 不同类型修复坑形貌对光传输产生的影响[J]. 强激光与粒子束, 2016, 28(5): 051002.

【18】Cormont P, Gallais L, Lamaignere L, et al. Impact of two CO2 laser heatings for damage repairing on fused silica surface[J]. Optics Express, 2010, 18(25): 26068-26076.

【19】You K W, Zhang Y L, Zhang X J, et al. Analysis of near-field modulations caused by defects in high power laser system[J]. Chinese Journal of Lasers, 2016, 43(3): 0302002.
尤科伟, 张艳丽, 张雪洁, 等. 高功率激光系统中缺陷引起的近场调制分析[J]. 中国激光, 2016, 43(3): 0302002.

【20】Sun C, Chen P Z, Wu F T. Discrete Fourier method analyses Bessel beam generated by lens-annular slit[J]. Acta Optica Sinica, 2016, 36(4): 0407001.
孙川, 陈培宗, 吴逢铁. 离散傅里叶方法分析环缝透镜产生无衍射光束[J]. 光学学报, 2016, 36(4): 0407001.

【21】Schmidt J D. Numerical simulation of optical wave propagation[M].[S.l.]: SPIE Press, 2010.

【22】Lü N G. Fourier optics[M]. Beijing: China Machine Press, 2006.
吕乃光. 傅里叶光学[M]. 北京: 机械工业出版社, 2006.

引用该论文

Bai Yang,Jiang Xiaolong,Jiang Yilan,Zhang Lijuan,Zhang Chuanchao,Liao Wei,Chen Jing,Zhou Hai,Yuan Xiaodong. Numerical Simulation of Effect of Cross-Linked Distribution of Mitigated Pits in Fused Silica Elements on Light Transport[J]. Chinese Journal of Lasers, 2018, 45(6): 0602004

白阳,蒋晓龙,蒋一岚,张丽娟,张传超,廖威,陈静,周海,袁晓东. 熔石英元件修复点交联分布对光传输影响的数值模拟[J]. 中国激光, 2018, 45(6): 0602004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF