首页 > 论文 > 中国激光 > 45卷 > 6期(pp:602003--1)

P92钢与Inconel 625合金厚板超窄间隙激光填丝焊接头的组织与性能

Microstructures and Properties of Joints in Ultra-Narrow-Gap Laser Wire Welding of P92 Steel and Inconel 625 Alloy Thick Plates

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用超窄间隙激光填丝焊技术实现了P92/Inconel 625异种接头,研究了焊接接头的组织和力学性能。结果表明,焊接接头的焊缝整齐,侧壁熔合良好,无气孔等缺陷;焊缝具有典型的凝固组织特征。P92钢热影响区的组织为马氏体,并分为粗晶区和细晶区。焊接接头界面中P92钢粗晶区的硬度最大,经热处理后硬度减小。常温拉伸试验中试样均断裂于Inconel 625合金,高温拉伸试验和高温持久试验中试样均断裂于P92钢,焊接接头的冲击韧性介于两种母材之间。

Abstract

The dissimilar weldment of P92/Inconel 625 is realized by the ultra-narrow-gap laser welding with filler wire and the microstructures and mechanical properties of the welded joints are systematically investigated. The results show that the quality of the welded joints have smooth welds, nice sidewall fusion, no pores and other defects. The welds possess a typical characteristic of solidification structure. The microstructure in the heat affected zone of P92 steels is martensite, which is divided into the coarse grain and fine grain zones. The micro-hardness in the fine grain zone of P92 steel at the welded joint interface is the largest, but it decreases after heat-treatment. The specimens fracture at Inconel 625 alloy in the tensile tests at the room temperature, but fracture at P92 steel in the tensile and stress-rupture tests at high temperature. The impact toughness of welded joints is between those of the two kinds of base materials.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG456.7

DOI:10.3788/cjl201845.0602003

所属栏目:激光制造

收稿日期:2017-11-28

修改稿日期:2017-12-26

网络出版日期:--

作者单位    点击查看

朱洪羽:上海交通大学材料科学与工程学院上海市激光制造与材料改性重点实验室, 上海 200240
聂璞林:上海交通大学材料科学与工程学院上海市激光制造与材料改性重点实验室, 上海 200240
李铸国:上海交通大学材料科学与工程学院上海市激光制造与材料改性重点实验室, 上海 200240
黄坚:上海交通大学材料科学与工程学院上海市激光制造与材料改性重点实验室, 上海 200240

联系人作者:聂璞林(nplhxy@sjtu.edu.cn)

备注:朱洪羽(1991—),男,硕士研究生,主要从事激光焊接方面的研究。E-mail: 18345175360@163.com

【1】Huo W H, Li J, Yan X. Effects of coolant flow rates on cooling performance of the intermediate pressure stages for an ultra-supercritical steam turbine[J]. Applied Thermal Engineering, 2014, 62(2): 723-731.

【2】Nowak G, Rusin A. Shape and operation optimisation of a supercritical steam turbine rotor[J]. Energy Conversion and Management, 2013, 74: 417-425.

【3】Ampornrat P, Gupta G, Was G S, et al. Tensile and stress corrosion cracking behavior of ferritic-martensitic steels in supercritical water[J]. Journal of Nuclear Materials, 2009, 395: 30-36.

【4】Li J B, Shang S, Sun Y Z, et al. Parameter nondimensionalization in laser direct metal deposition formation of Inconel 625 and its influence on single track geometric morphology[J]. Chinese Journal of Lasers, 2017, 44(3): 0302010.
李进宝, 商硕, 孙有政, 等. Inconel 625激光直接金属沉积成形参数无量纲化及其对单道几何形貌的影响[J]. 中国激光, 2017, 44(3): 0302010.

【5】Francis J A, Bhadeshia H K D H, Withers P J. Welding residual stresses in ferritic power plant steels[J]. Materials Science and Technology, 2007, 23(9): 1009-1020.

【6】Yeni C, Kocak M. Fracture analysis of laser beam welded superalloys Inconel 718 and 625 using the FITNET procedure[J]. International Journal of Pressure Vessels and Piping, 2008, 85(8): 532-539.

【7】Skouras A, Flewitt P E J, Peel M, et al. Residual stress measurements in a P92 steel-In625 superalloy metal weldment in the as-welded and after post weld heat treated conditions[J]. International Journal of Pressure Vessels and Piping, 2014, 123: 10-18.

【8】Wiednig C, Lochbichler C, Enziger N, et al. Dissimilar electron beam welding of nickel base alloy 625 and 9%Cr steel[J]. Procedia Engineering, 2014, 86: 184-194.

【9】Wang B P, Zhao Y, Huang J. Investigation on microstructure of thick plate stainless steel joint welded by multi-pass laser welding with filler wire[J]. Chinese Journal of Lasers, 2013, 40(2): 0203008.
王柏平, 赵勇, 黄坚. 厚板不锈钢激光填丝多道焊的接头组织分析[J]. 中国激光, 2013, 40(2): 0203008.

【10】Zhang G W, Xiao R S. Microstructure and mechanical property of 60 mm-thick 304 stainless steel joint by ultra-narrow gap fiber laser beam welding[J]. Chinese Journal of Lasers, 2014, 41(8): 0803007.
张国伟,肖荣诗. 60 mm厚304不锈钢板超窄间隙光纤激光焊接接头组织性能研究[J]. 中国激光, 2014, 41(8): 0803007.

【11】Zhao Y, Wang Q Z, Huang J, et al. Microstructures and properties of ultra-narrow-gap multi-pass welded joint of 50 mm turbine rotor steel by laser welding with filler wire[J]. Chinese Journal of Lasers, 2015, 42(2): 0203007.
赵勇, 王清曌, 黄坚, 等. 50 mm转子钢超窄间隙激光填丝焊接头组织与性能[J]. 中国激光, 2015, 42(2): 0203007.

【12】Zhang Y W, Zhang M L, Sun Z Y, et al. Microstructure and properties of 50 mm thick SA508Gr.3Cl.2 steel welding joints by ultra-narrow-gap laser welding with filler wire[J]. Chinese Journal of Lasers, 2017, 44(11): 1102006.
张益文, 张茂龙, 孙志远, 等. 50 mm厚SA508Gr.3Cl.2钢超窄间隙激光填丝焊接头组织与性能[J]. 中国激光, 2017, 44(11): 1102006.

【13】Zhao L, Jing H Y, Xiu J J, et al. Experimental investigation of specimen size effect on creep crack growth behavior in P92 steel welded joint[J]. Materials and Design, 2014, 57: 736-743.

【14】Laha K, Chandravathi K S, Rao K B S, et al. An assessment of creep deformation and fracture behavior of 2.25Cr-1Mo similar and dissimilar weld joints[J]. Metallurgical and Materials Transactions A, 2001, 32(1): 115-124.

【15】Laha K, Chandravathi K S, Parameswaran P, et al. Characterization of microstructures across the heat-affected zone of the modified 9Cr-1Mo weld joint to understand its role in promoting type IV cracking[J]. Metallurgical and Materials Transactions A, 2007, 38(1): 58-68.

【16】Divya M, Das C R, Albert S K, et al. Influence of welding process on type IV cracking behavior of P91 steel[J]. Materials Science and Engineering A, 2014, 613: 148-158.

【17】Shanmugarajan B, Padmanabham G, Kumar H, et al. Autogenous laser welding investigations on modified 9Cr-1Mo(P91) steel[J]. Science and Technology of Welding and Joining, 2011, 16(6): 528-534.

【18】Arivazhagan B, Kamaraj M. A study on factors influencing toughness of basic flux-cored weld of modified 9Cr-1Mo steel[J]. Journal of Materials Engineering and Performance, 2011, 20(7): 1188-1195.

【19】Nie P L, Ojo O A, Li Z G. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy[J]. Acta Materialia, 2014, 77: 85-95.

【20】Li G, Huang J, Wu Y X. An investigation on microstructure and properties of dissimilar welded Inconel 625 and SUS 304 using high-power CO2 laser[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(5/6/7/8): 1203-1214.

【21】Xu F J, Lü Y H, Liu Y X, et al. Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process[J]. Journal of Materials Science and Technology, 2013, 29(5): 480-488.

【22】Zhao L, Jing H Y, Xu L Y, et al. Analysis of creep crack growth behavior of P92 steel welded joint by experiment and numerical simulation[J]. Materials Science and Engineering A, 2012, 558: 119-128.

【23】Chen G, Wang G Z, Zhang J W, et al. Effects of initial crack positions and load levels on creep failure behavior in P92 steel welded joint[J]. Engineering Failure Analysis, 2015, 47: 56-66.

【24】Wang X, Pan Q G, Ren Y Y, et al. Microstructure and type IV cracking behavior of HAZ in P92 steel weldment[J]. Materials Science and Engineering A, 2012, 552: 493-501.

【25】Moon J, Lee C H, Lee T H, et al. Phase transformation and impact properties in the experimentally simulated weld heat-affected zone of a reduced activation ferritic/martensitic steel[J]. Journal of Nuclear Materials, 2014, 455(1/2/3): 81-85.

【26】Wei Y H, Qiao S F, Lu F G, et al. Failure transition mechanism in creep rupture of modified casting 9Cr-1.5Mo-1Co welded joint[J]. Materials and Design, 2016, 97: 268-278.

引用该论文

Zhu Hongyu,Nie Pulin,Li Zhuguo,Huang Jian. Microstructures and Properties of Joints in Ultra-Narrow-Gap Laser Wire Welding of P92 Steel and Inconel 625 Alloy Thick Plates[J]. Chinese Journal of Lasers, 2018, 45(6): 0602003

朱洪羽,聂璞林,李铸国,黄坚. P92钢与Inconel 625合金厚板超窄间隙激光填丝焊接头的组织与性能[J]. 中国激光, 2018, 45(6): 0602003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF