Chinese Optics Letters, 2018, 16 (6): 061403, Published Online: Jul. 2, 2018   

Sub-picosecond chirped laser pulse-induced airflow and water condensation in a cloud chamber Download: 691次

Author Affiliations
1 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 MOE Key Laboratory of Advanced Micro-structured Materials, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
3 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
4 Center for Optics, Photonics and Laser (COPL), Laval University, Quebec City, Quebec G1V 0A6, Canada
Abstract
Sub-picosecond chirped laser pulse-induced airflow and water condensation were investigated in a cloud chamber. The results indicate that the positively chirped sub-picosecond laser pulses generate a more uniform intensity distribution inside the plasma column, leading to a weaker airflow and an elliptic-shaped snow pile. The negatively chirped sub-picosecond laser pulses generate a spark-like intensity distribution inside the plasma column, which produces a wider range of airflow and a round snow pile. The amount of snow weight and the concentration of NO3 are found to be dependent on the intensity distribution inside the plasma column. The visibly stronger plasma column generates much more snow and a higher concentration of NO3 . These experimental results provide a reference for sub-picosecond laser-induced water condensation in realistic atmospheric conditions.

Haiyi Sun, Yonghong Liu, Jiansheng Liu, Jingjing Ju, Cheng Wang, Xingkai Hu, Zhongbin Zhu, Yaoxiang Liu, Tiejun Wang, See Leang Chin, Ruxin Li, Zhizhan Xu. Sub-picosecond chirped laser pulse-induced airflow and water condensation in a cloud chamber[J]. Chinese Optics Letters, 2018, 16(6): 061403.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!