High Power Laser Science and Engineering, 2018, 6 (2): 02000e28, Published Online: Jul. 4, 2018  

Investigation on extreme frequency shift in silica fiber-based high-power Raman fiber laser Download: 677次

Author Affiliations
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract
In this paper, we experimentally investigated the extreme frequency shift in high-power Raman fiber laser (RFL). The RFL was developed by using a pair of fiber Bragg gratings with fixed and matched central wavelength (1120 nm) combined with a piece of 31-m-long polarization maintaining (PM) passive fiber adopted as Raman gain medium. The pump source was a homemade high-power, linearly polarized (LP) wavelength-tunable master oscillator power amplifier (MOPA) source with ${\sim}25~\text{nm}$ tunable working range (1055–1080 nm). High-power and high-efficiency RFL with extreme frequency shift between the pump and Stokes light was explored. It is found that frequency shift located within 10.6 THz and 15.2 THz can ensure efficient Raman lasing, where the conversion efficiency is more than 95% of the maximal value, 71.3%. In addition, a maximum output power of 147.1 W was obtained with an optical efficiency of 71.3%, which is the highest power ever reported in LP RFLs to the best of our knowledge.

Jiaxin Song, Hanshuo Wu, Jun Ye, Hanwei Zhang, Jiangming Xu, Pu Zhou, Zejin Liu. Investigation on extreme frequency shift in silica fiber-based high-power Raman fiber laser[J]. High Power Laser Science and Engineering, 2018, 6(2): 02000e28.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!