Photonics Research, 2018, 6 (7): 07000703, Published Online: Jul. 4, 2018   

Graphene-enabled electrically controlled terahertz meta-lens Download: 782次

Author Affiliations
1 Beijing Engineering Research Center for Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
2 Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
3 Micro and Nanotechnology Research Center, School of Physics, Beijing Institute of Technology, Beijing 100081, China
4 e-mail: yzhang@mail.cnu.edu.cn
Abstract
Metasurfaces have become a new photonic structure for providing potential applications to develop integrated devices with small thickness, because they can introduce an abrupt phase change by arrays of scatterers. To be applied more widely, active metasurface devices are highly desired. Here, a tunable terahertz meta-lens whose focal length is able to be electrically tuned by 4.45λ is demonstrated experimentally. The lens consists of a metallic metasurface and a monolayer graphene. Due to the dependence of the abrupt phase change of the metasurface on the graphene chemical potential, which can be modulated using an applied gate voltage, the focal length is changed from 10.46 to 12.24 mm when the gate voltage increases from 0 to 2.0 V. Experimental results are in good agreement with the theoretical hypothesis. This type of electrically controlled meta-lens could widen the application of terahertz technology.

Weiguang Liu, Bin Hu, Zongduo Huang, Hongyu Guan, Heting Li, Xinke Wang, Yan Zhang, Hongxing Yin, Xiaolu Xiong, Juan Liu, Yongtian Wang. Graphene-enabled electrically controlled terahertz meta-lens[J]. Photonics Research, 2018, 6(7): 07000703.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!