首页 > 论文 > 量子光学学报 > 24卷 > 2期(pp:120-133)

基于十粒子Cluster态的受控双向量子隐形传态在噪声背景下的纠缠特性及保真度优化方法

Effects of Noise on Bidirectional Quantum Controlled Teleportation by using Ten-qubit Cluster State and Fidelity Optimization Method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

本文提出了一种利用弱测量进行纠缠预补偿的方法。首先分析了十粒子Cluster态的受控双向量子隐形传态的传输过程, 通过理论推导给出了不同测量基下相应的幺正变换, 成功得到对方待传的未知量子态。在此基础上重点研究了振幅阻尼噪声对量子隐形传态纠缠保真度的影响, 并根据弱测量和反馈测量对量子传输信道的调控特性, 提出了预补偿的纠缠优化方法。理论分析与性能仿真结果表明, 相比于现有纠缠优化方法, 本方法不需要引入任何辅助粒子和复杂的系统操作就能获得更高的隐形传态保真度, 对克服纠缠退相干带来的隐形传态质量下降具有一定意义。

Abstract

The influence of environmental noise can cause decoherence of quantum states, and the quality of teleportation can be seriously damaged and even leads to communication fails in quantum teleportation.In order to overcome this problem, a method of entanglement pre-compensation using weak measurements is proposed.Firstly, the bidirectional quantum controlled teleportation through ten-qubit cluster state is analyzed, and the corresponding unitary transformation under different measurement bases is given by theoretical derivation, thus the unknown quantum states of the other party to be transmitted is successfully obtained.On this basis, we focus on the study of the amplitude damping effect on teleportation of quantum entanglement fidelity.And according to the control characteristics of weak measurement and reversing measurement over the quantum transmission channel, a method of pre-compensation entanglement optimization is proposed.Theoretical analysis and simulation results show that, comparing with the existing entanglement optimization method, our method does not require the introduction of any auxiliary particles and complex operation system.And higher teleportation fidelity can be obtained obviously.It is of great significance for bidirectional quantum controlled teleportation of cluster state to overcome the decrease of teleportation quality caused by entanglement decoherence.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O431

DOI:10.3788/jqo20182402.0102

所属栏目:量子光学基础

基金项目:国家自然科学基金(61172071;61201194)和陕西省自然科学基础研究计划(2014JQ8318);陕西省国际科技合作与交流计划项目(2015KW-013);陕西省教育厅科研计划项目(16JK1711)

收稿日期:2017-08-13

修改稿日期:2017-12-20

网络出版日期:--

作者单位    点击查看

贾娜:西安邮电大学 通信与信息工程学院, 西安 710121
聂敏:西安邮电大学 通信与信息工程学院, 西安 710121
杨光:西安邮电大学 通信与信息工程学院, 西安 710121西北工业大学 电子信息工程学院, 西安 710072
张美玲:西北工业大学 电子信息工程学院, 西安 710072
裴昌幸:西安电子科技大学 综合业务网国家重点实验室, 西安 710071

联系人作者:贾娜(1023176142@qq.com)

备注:贾娜(1992-), 女, 陕西人, 硕士研究生, 主要从事量子通信、移动通信、现代通信网理论和关键技术的研究

【1】Bennett C, Brassard G, Crepeau C, et al.Teleporting an Unknown Quantum State Via Dual Classical and EPR Channels[J].Physical Review Letters, 1993, 70(13):1895.DOI:101103/PhysRevLett.701895.

【2】Bennett C H, Brassard G.Quantum Cryptography:Public Key Distribution and Coin Tossing[C].Proc.IEEE International Conference on Computers Systems and Signal Processing.IEEE, 1984:175-179.DOI:101016/j.tcs.201108039.

【3】Buek V, Hillery M.Quantum Copying:Beyond the No-cloning Theorem[J].Phys Rev A., 1996, 54(3):1844.DOI:101103/PhysRevA.541844.

【4】Ekert A K.Quantum Cryptography Based on Bell’s Theorem[J].Physical Review Letters, 1991, 67(6):661.DOI:101103/PhysRevLett.67661.

【5】Hillery M, Buzek V, Berthiaume A.Quantum Secret Sharing[J].Physical Review A, 1998, 59(3):1829-1834.DOI:101103/PhysRevA.591829.

【6】Deng F, Zhou H, Long G.Circular Quantum Secret Sharing[J].Journal of Physics A General Physics, 2006, 39(45):14089-14099.DOI:101088/0305-4470/39/45/018.

【7】Long G L, Liu X S.Theoretically Efficient High-capacity Quantum-key-distribution Scheme[J].Physical Review A, 2002, 65(3):2302.DOI:101103/PhysRevA.65032302.

【8】Deng F G, Long G L.Controlled Order Rearrangement Encryption for Quantum Key Distribution[J].Physical Review A, 2003, 68(4):4343-4349.DOI:101103/PhysRevA.68042315.

【9】Zhang W, Ding D S, Sheng Y B, et al.Quantum Secure Direct Communication with Quantum Memory[J].Physical Review Letters, 2017, 118(22):220501.DOI:101103/PhysRevLett.118220501.

【10】李蓬勃, 古英, 龚旗煌, 等.利用耦合腔QED制备cluster态[C].全国量子光学学术报告会, 2008.

【11】李淑悦.离子阱中六粒子cluster态的制备和利用腔QED实现两原子任意态的远程制备[D].河北师范大学, 2008.DOI:107666/d.y1254463.

【12】张亚娟, 轩亚楠, 魏达秀.Cluster态的核磁共振实验制备[J].波谱学杂志, 2014, 31(1):108-115.DOI:103969/j.issn.1000-4556201401012.

【13】赵春然.基于两光子宇称门接近确定性的制备偏振Cluster态[J].光子学报, 2013, 42(9):1057-1060.DOI:103788/gzxb201342091057.

【14】水田, 查新未, 王东, 等.一种较好的三粒子W态概率隐态传输方案[J].量子电子学报, 2012, 29(3):339-343.DOI:103969/j.issn.1007-5461201203013.

【15】孙新梅, 查新未, 祁建霞, 等.基于非最大纠缠的五粒子Cluster态的高效量子态共享方案[J].物理学报, 2013, 62(23):230302-230302.DOI:107498/aps.62230302.

【16】孙新梅, 查新未.基于六粒子最大纠缠态的双向控制隐形传态方案[J].光子学报, 2013, 42(9):1052-1056.DOI:103788/gzxb201342091052.

【17】李渊华, 刘俊昌, 聂义友.基于六粒子纠缠态和Bell态测量的量子信息分离[J].光子学报, 2011, 40(2):307-310.DOI:103788/gzxb201140020307.

【18】Choudhury B S, Dhara A.A Bidirectional Teleportation Protocol for Arbitrary Two-qubit State Under the Supervision of a Third Party[J].International Journal of Theoretical Physics, 2016, 55(4):2275-2285.DOI:101007/s10773-015-2865-y.

【19】Pan J W, Simon C, Brukner C, et al.Entanglement Purification for Quantum Communication[J].Nature, 2001, 410(6832):1067-70.DOI:101038/35074041.

【20】Ren B C, Du F F, Deng F G.Two-step Hyperentanglement Purification with the Quantum-state-joining Method[J].Phys rev a, 2014, 90(5).DOI:101103/PhysRevA.90052309.

【21】Yang G, Lian B W, Nie M.Characteristics of Multi-hop Noisy Quantum Entanglement Channel and Optimal Relay Protocol[J].Acta Physica Sinica, 2015.DOI:107498/aps.64240304.

【22】Calderbank A R, Shor P W.Good Quantum Error-correcting Codes Exist[J].Physical Review A, 1995, 54(2):1098-1105.DOI:101103/PhysRevA.541098.

【23】Xu G F, Zhang J, Tong D M, et al.Nonadiabatic Holonomic Quantum Computation in Decoherence-free Subspaces[J].Physical Review Letters, 2012, 109(17):170501.DOI:101103/PhysRevLett.109170501.

【24】Liu A P, Cheng L Y, Chen L, et al.Quantum Information Processing in Decoherence-free Subspace with Nitrogen-vacancy Centers Coupled to a Whispering-gallery Mode Microresonator[J].Optics Communications, 2014, 313(4):180-185.DOI:101016/j.optcom.201310032.

【25】Li X H, Deng F G, Zhou H Y.Faithful Qubit Transmission Against Collective Noise Without Ancillary Qubits[J].Applied Physics Letters, 2007, 91(14):145.DOI:101063/12794433.

【26】Yang G, Lian B W, Nie M.Decoherence Suppression for Three-qubit W-like State using Weak Measurement and Iteration Method[J].Chinese Physics B, 2016, 25(8):80310-080310.DOI:101088/1674-1056/25/8/080310.

【27】Yang G, Lian B W, Nie M, et al.Bidirectional Multi-qubit Quantum Teleportation in Noisy Channel Aided with Weak Measurement[J].Chinese Physics B, 2017, 26(4):115-121.DOI:101088/1674-1056/26/4/040305.

【28】Kim Y S, Lee J C, Kwon O, et al.Protecting Entanglement from Decoherence Using Weak Measurement and Quantum Measurement Reversal[J].Nature Physics, 2012, 8(2):117-120.DOI:101038/nphys2178.

【29】杨光, 廉保旺, 聂敏.多跳噪声量子纠缠信道特性及最佳中继协议[J].物理学报, 2015, 24:50-60.DOI:107498/aps.64240304.

【30】Li Y H, Jin X M.Bidirectional Controlled Teleportation by Using Nine-qubit Entangled State in Noisy Environments[J].Quantum Information Processing, 2016, 15(2):929-945.DOI:101007/s11128-015-1194-7.

【31】Tan, Qiaoyun, Wang, et al.Amplitude-Damping Decoherence Suppression of Two-Qubit Entangled States;by Weak Measurements[J].International Journal of Theoretical Physics, 2013, 52(2):612-619.DOI:101007/s10773-012-1367-4.

【32】李春燕, 周宏余, 汪燕, 等.Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations[J].中国物理快报:英文版, 2005, 22(5):1049-1052.DOI:101088/0256-307X/22/5/006.

引用该论文

JIA Na,NIE Min,YANG Guang,ZHANG Mei-ling,PEI Chang-xing. Effects of Noise on Bidirectional Quantum Controlled Teleportation by using Ten-qubit Cluster State and Fidelity Optimization Method[J]. Acta Sinica Quantum Optica, 2018, 24(2): 120-133

贾娜,聂敏,杨光,张美玲,裴昌幸. 基于十粒子Cluster态的受控双向量子隐形传态在噪声背景下的纠缠特性及保真度优化方法[J]. 量子光学学报, 2018, 24(2): 120-133

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF