量子电子学报, 2018, 35 (4): 507, 网络出版: 2018-08-24  

空位缺陷ZnS的电子状态、磁性质与光学性质研究

Electronic states, magnetic and optical properties of Zn vacant ZnS
作者单位
1 广西民族师范学院物理与电子工程学院, 广西 崇左 532200
2 北京工业大学材料科学与工程学院, 北京 100124
3 云南师范大学数学学院, 云南 昆明 650500
4 昌吉学院物理系, 新疆 昌吉 831100
摘要
基于密度泛函理论第一性原理,研究了Zn空位缺陷对ZnS半导体材料电子状态、 磁性质和光学性质的影响。 结果表明Zn空位缺陷浓度为6.25%时, ZnS半导体材料仍呈直接带隙型能带结构,带隙较本征ZnS半导体增大 了6.4%, 达到2.19 eV。缺陷体系s态、p态电子主要在距离费米能量较近的区域产生能带,数量较少; Zn d态 电子主要在距离费米能量较远的区域产生能带。Zn空位缺陷对ZnS半导体材料是一种空穴型掺杂, Zn空位会 增加ZnS的空穴型载流子浓度。其价带空穴具有较大有效质量,导带电子具有较小有效质量, Zn空位缺 陷ZnS不显示磁性。Zn空位缺陷ZnS半导体材料210 nm附近介电吸收峰强度降低, 170 nm附近介电吸收峰 消失, 100 nm波长附近出现了较弱的介电吸收峰。
Abstract
Influences of Zn vacancy defect on electronic states, magnetic and optical properties of ZnS semiconductor material are investigated by density functional theory first principle. Results show that when the concentration of Zn vacancy defect is 6.25%, ZnS semiconductor material still exhibits a direct band gap structure. Compared with the intrinsic ZnS semiconductor, the band gap is increased by 6.4%, reaching 2.19 eV. The s and p state electrons of defect system form the energy bands near Fermi energy, few in number, and Zn d electrons form the energy bands far from Fermi energy. The Zn vacancy for ZnS semiconductor is a kind of hole doping type and the hole carrier concentration can be increased by Zn vacancy. Its hole carriers within the valence bands are heavy and the electron carriers within the conduction bands are light. Zn vacant ZnS does not show magnetism. The dielectric absorption peak intensity of Zn vacant ZnS semiconductor near 210 nm decreases, the dielectric absorption peak near 170 nm disappears and a weaker dielectric absorption peak near 100 nm emerges.

韦树贡, 房慧, 王如志, 李凡生, 黄灿胜, 郝五零, 孙毅. 空位缺陷ZnS的电子状态、磁性质与光学性质研究[J]. 量子电子学报, 2018, 35(4): 507. WEI Shugong, FANG Hui, WANG Ruzhi, LI Fansheng, HUANG Cansheng, HAO Wuling, SUN Yi. Electronic states, magnetic and optical properties of Zn vacant ZnS[J]. Chinese Journal of Quantum Electronics, 2018, 35(4): 507.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!