首页 > 论文 > 发光学报 > 39卷 > 6期(pp:884-890)

光子晶体光纤结构与掺杂对受激布里渊散射快光的影响

Influence of Structure and Doping on Stimulated Brillouin Scattering Fast Light in Photonic Crystal Fibers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

由受激布里渊散射三波耦合方程导出了在小信号条件下的快光时间提前量, 通过全矢量有限元法模拟了光子晶体光纤占空比和GeO2掺杂质量分数对布里渊频移、时间提前量、脉冲展宽因子及脉冲形变的影响。结果表明, 布里渊频移随着占空比和掺杂质量分数的增大而减小。在保持泵浦功率为20 mW和快光传输长度为10 m的条件下, 时间提前量随着占空比的增大而增大, 随着掺杂质量分数的增大而减小。脉冲展宽因子与时间提前量变化趋势相反。当占空比为0.8, Ge掺杂质量分数为18%时, 能够实现快光时间提前量为29.7 ns, 脉冲展宽因子为0.88。布里渊阈值随着占空比的增大而减小, 随着掺杂质量分数的增大而增大。

Abstract

Time advancement of fast light in small signal regime was derived from three wave coupling equations of stimulated Brillouin scattering(SBS) in photonic crystal fibers(PCFs), and the influence of air-filling ratio and doping(doped GeO2) on Brillouin frequency shift, time advancement, pulse broadening factor and pulse deformation were simulated by full vectorial finite element method. The results show that the Brillouin frequency shift decreases with the increase of air-filling ratio and doping mass fraction. The time advancement increases with the increase of air filling factor, but decreases with the increase of doping mass fraction at a given pump power of 20 mW and fiber length of 10 m. The varying trend of broadening factor is just contrary to that of the time advancement. The time advancement of 29.7 ns and the pulse broadening factor of 0.88 are achieved at the air filling factor of 0.8 and GeO2 doping mass fraction of 18%. The Brillouin threshold decreases with the increment of filling factor and decrement of doping mass fraction.

中国激光微信矩阵
补充资料

中图分类号:TN929.11

DOI:10.3788/fgxb20183906.0884

所属栏目:发光学应用及交叉前沿

基金项目:国家自然科学基金(61665005, 61167005, 61367007)资助项目

收稿日期:2017-09-27

修改稿日期:2017-12-10

网络出版日期:--

作者单位    点击查看

牛帅斌:兰州理工大学 理学院, 甘肃 兰州 730050
侯尚林:兰州理工大学 理学院, 甘肃 兰州 730050
雷景丽:兰州理工大学 理学院, 甘肃 兰州 730050
王道斌:兰州理工大学 理学院, 甘肃 兰州 730050
李晓晓:兰州理工大学 理学院, 甘肃 兰州 730050

联系人作者:侯尚林(houshanglin@163.com)

备注:牛帅斌(1994-), 男, 甘肃兰州人, 硕士研究生, 2015年于河南大学获得学士学位, 主要从事光纤受激布里渊散射快慢光的研究。 E-mail: niushuaibin@126.com

【1】HAU L V, HARRIS S E, DUTTON Z, et al.. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397: 594-598.

【2】KASH M M, SAUTENKOV V A, ZIBROV A S, et al.. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas[J]. Phys. Rev. Lett., 1999, 82(26): 5229-5232.

【3】CHU S, WONG S. Linear pulse propagation in an absorbing medium[J]. Phys. Rev. Lett., 1982, 48(11): 738-741.

【4】STENNER M D, GAUTHIER D J, NEIFELD M A. The speed of information in a “fast-light” optical medium[J]. Nature, 2003, 425: 695-698.

【5】BOYD R W, GAUTHIER D J. Controlling the velocity of light pulses[J]. Science, 2009, 326: 1074-1077.

【6】HARRIS S E, FIELD J E, IMAMOGLU A. Nonlinear optical processes using electromagnetically induced transparency[J]. Phys. Rev. Lett., 1991, 64(10): 1107-1110.

【7】HILLMAN L W, BOYD R W, KRASINSKI J, et al.. Observation of a spectral hole due to population oscillations in a homogeneously broadened optical absorption line[J]. Opt. Commun., 1983, 45(6): 416-419.

【8】MORI D, BABA T. Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide[J]. Opt. Express, 2005, 13(23): 9398-9408.

【9】HAO R, CASSAN E, LE R X, et al.. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides[J]. Opt. Express, 2010, 18(16): 16309.

【10】PISCO M, RICCIARDI A, CAMPOPIANO S, et al.. Fast and slow light in optical fibers through tilted fiber Bragg gratings[J]. Opt. Express, 2009, 17(26): 23502-23510.

【11】SHARPING J, OKAWACHI Y, GAETA A. Wide bandwidth slow light using a Raman fiber amplifier.[J]. Opt. Express, 2005, 13(16): 6092.

【12】OKAWACHI Y, BIGELOW M S, SHARPING J E, et al. Tunable all-optical delays via Brillouin slow light in an optical fiber[C]. Lasers and Electro-Optics. IEEE, Sydney, Australia, 2005: 511-513.

【13】DAHAN D, EISENSTEIN G. Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical, buffering[J]. Opt. Express, 2005, 13(16): 6234.

【14】THEVENAZ L. Slow and fast light in optical fibers: review and perspectives[C]. Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference, IEEE, Belek-Antalya, Turkey, 2009: 1-2.

【15】HASSANI A, DUPUIS A, SKOROBOGATIY M. Low loss porous terahertz fibers containing multiple subwavelength holes[J]. Appl. Phys. Lett., 2008, 92(7): 071101-1-3.

【16】SINHA R K, KUMAR A, SAINI T S. Analysis and design of single-mode As2Se3-chalcogenide photonic crystal fiber for generation of slow light with tunable features[J]. IEEE J. Select. Top. Quant. Electron., 2016, 22(2): 1-6.

【17】KALOSHA V P, CHEN L, BAO X. Slow and fast light via SBS in optical fibers for short pulses and broadband pump[J]. Opt. Express, 2007, 14(26): 12693-12703.

【18】KALOSHA V P, CHEN L, BAO X. Slow light of subnanosecond pulses via stimulated Brillouin scattering in nonuniform fibers[J]. Phys. Rev. A, 2007, 75(2): 441-445.

【19】QIN G, SOTOBAYASHI H, TSUCHIYA M, et al.. Stimulated Brillouin scattering in a single-mode tellurite fiber for amplification, lasing, and slow light generation[J]. J. Lightwave Technol., 2008, 26(5): 492-498.

【20】AGRAWAL G. Applications of Nonlinear Fiber Optics[M]. Oxford: Cademic Press, 2001.

【21】KOYAMADA Y, SATO S, NAKAMURA S, et al.. Simulating and designing Brillouin gain spectrum in single-mode fibers[J]. J. Lightwave Technol., 2004, 22(2): 631-639.

【22】CHENG T, LIAO M, GAO W, et al.. Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber[J]. Opt. Express, 2012, 20(27): 28846-54.

【23】DASGUPTA S, POLETTI F, LIU S, et al.. Modeling Brillouin gain spectrum of solid and microstructured optical fibers using a finite element method[J]. J. Lightwave Technol., 2011, 29(1): 22-30.

【24】JAIN V, SHARMA S, SAINIT S, et al.. Design and analysis of single-mode tellurite photonic crystal fibers for stimulated Brillouin scattering based slow-light generation[J]. Appl. Opt., 2016, 55(25): 6791.

引用该论文

NIU Shuai-bin,HOU Shang-lin,LEI Jing-li,WANG Dao-bin,LI Xiao-xiao. Influence of Structure and Doping on Stimulated Brillouin Scattering Fast Light in Photonic Crystal Fibers[J]. Chinese Journal of Luminescence, 2018, 39(6): 884-890

牛帅斌,侯尚林,雷景丽,王道斌,李晓晓. 光子晶体光纤结构与掺杂对受激布里渊散射快光的影响[J]. 发光学报, 2018, 39(6): 884-890

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF