首页 > 论文 > 红外与激光工程 > 47卷 > 8期(pp:817005--1)

3D激光扫描共聚焦显微镜计量特性分析及测试

Measurement characteristics analysis and test of 3D laser scanning confocal microscope

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了合理评定激光扫描共聚焦显微镜(Laser Scanning Confocal Microscope, LSCM)的测量性能, 提出了一种用于检验LSCM计量特性的测试方法。首先, 依据LSCM成像原理, 对其技术特点, 特别是轴向分辨率和横向分辨率等进行了理论分析; 然后对其计量特性的参数指标进行了归纳, 并提出相应的性能测试方法。具体包括采用线间隔为微纳米级的网格板等作为标准器, 测试LSCM的放大倍数和光学横向分辨率; 采用纳米级高度台阶样板测试LSCM的光学轴向分辨率和轴向定位特性; 采用激光干涉仪测试样品台工作性能等。实验证明: 该方法能够满足当前普遍应用的LSCM的性能测试需求。

Abstract

In order to evaluate the measurement performance of laser scanning confocal microscope (LSCM) accurately, one measurement approach for checking LSCM was presented. Firstly, based on the imaging principle, the technical characteristics of LSCM, especially the vertical resolution and lateral resolution were analyzed in theory; then main parameters of the measurement characteristics were summarized, and the corresponding performance testing menthod were proposed. Such as the amplification and the lateral optical resolution of the LSCM were tested with the nanometer and sub micronmeter line spacing grid standard plates; the axial optical resolution and the axial positioning characteristics of the LSCM were tested with the nanometer height steps; the performances of the sample stage were tested with the laser interferometer. The experimental results show that this method can meet the current performance requirements of LSCM.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TB921

DOI:10.3788/irla201847.0817005

所属栏目:光电测量

基金项目:国家自然科学基金(51675497); 北京市自然科学基金(3162034); 国家重点研发计划专项(2017YFF0206305);河南省高等学校重点科研项目(16A413006); 质检总局科研项目(ANL1617)

收稿日期:2018-03-13

修改稿日期:2018-04-17

网络出版日期:--

作者单位    点击查看

崔建军:中国计量科学研究院, 北京 100013
杜 华:中国计量科学研究院, 北京 100013
朱小平:中国计量科学研究院, 北京 100013
薛 梓:中国计量科学研究院, 北京 100013
闫勇刚:河南理工大学 机械与动力工程学院, 河南 焦作 454000
陈 恺:中国计量科学研究院, 北京 100013河南理工大学 机械与动力工程学院, 河南 焦作 454000

联系人作者:崔建军(ycuijj@163.com)

备注:崔建军(1977-), 男, 副研究员, 博士, 主要从事长度计量、干涉测量、光纤光栅传感技术方面的研究。

【1】Mao Heng, Tao Louis, Chen Liangyi. Application and development of adaptive optics to three-dimensional in vivo deep tissue fluorescent microscopy[J]. Infrared and Laser Engineering, 2016, 45(6): 0602001. (in Chinese)
毛珩, Tao Louis, 陈良怡. 自适应光学技术在深层动态荧光显微成像中的应用和发展[J]. 红外与激光工程, 2016, 45(6): 0602001.

【2】Zhou Xiaoqin, Hou Qiang, Liu Qiang, et al. Research status and tendency of measurement techniques for geometric features of micro/nano structures[J]. Journal of Beijing University of Technology, 2015, 41(3): 327-339. (in Chinese)
周晓勤, 侯强, 刘强,等. 微纳结构几何特征检测技术的研究现状与发展趋势[J]. 北京工业大学学报, 2015, 41(3):327-339.

【3】Qiu Lirong, Zhao Weiqian, Wang Xu, et al. Error analysis for a laser differential confocal radius measurement system[J]. Applied Optics, 2015, 54(5): 1078-84.

【4】Cui Jianjun. Lateral resolution test for confocal laser scanning microscope[J]. Key Engineering Materials, 2014, 609-610(11): 1159-1164.

【5】Giusca C L, Leach R K. Calibration of the Metrological Characteristics of Imaging Confocal Microscopes (ICMs)[M]. Britain: National Physical Laboratroy, 2012: 17-62.

【6】Beraldin J A, Mackinnon D, Cournoyer L. Metrological characterization of 3D imaging systems: progress report on standards developments[J]. Anatomical Record, 2015, 151(2): 107-117.

【7】Liu Jian, Li Mengzhou, Li Qiang, et al. Decoupling criterion based on limited energy loss condition for groove measurement using optical scanning microscopes[J]. Measurement Science & Technology, 2016, 27(12): 125014.

【8】Liu Jian, Gu Kang, Li Mengzhou, et al. 3D measurement decoupling criterion in optical microscopy[J]. Infrared and Laser Engineering, 2017, 46(3): 0302001. (in Chinese)
刘俭, 谷康, 李梦周,等. 光学显微三维测量解耦合准则[J]. 红外与激光工程, 2017, 46(3): 0302001.

【9】Li Yao, Yang Yongying, Wang Chen, et al. Point diffraction in terference detection technology[J]. Chinese Optics, 2017,10(4): 391-414. (in Chinese)
李瑶, 杨甬英, 王晨, 等. 点衍射干涉检测技术[J]. 中国光学, 2017, 10(4): 391-414.

【10】Cole R W, Jinadasa T, Brown C M. Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control[J]. Nature Protocols, 2011, 6(12): 1929-1941.

【11】Xiao Yun, Zhang Yunhai, Wang Zhen, et al. Effect of incident laser on resolution of LSCM[J]. Optics and Precision Engineering, 2014, 22(1): 31-38. (in Chinese)
肖昀, 张运海, 王真, 等. 入射激光对激光扫描共聚焦显微镜分辨率的影响[J]. 光学 精密工程, 2014, 22(1): 31-38.

【12】Yu Qing, Yu Xiaofen, Cui Changcai, et al. Survey of parallel light source technology in parallel confocal measurement[J]. Chinese Optics, 2013, 6(5): 652-659. (in Chinese)
余卿, 余晓芬, 崔长彩,等. 并行共焦测量中的并行光源技术综述[J]. 中国光学, 2013, 6(5): 652-659.

【13】Zeiss M F C. Confocal laser scanning microscopy[J]. Journal of Microscopy, 1995, 178(3): 261-266.

【14】Cui Jianjun, Gao Sitian. Nanometer film thickness metrology and traceability based on grazing incidence X-ray reflectometry[J]. Acta Physica Sinica, 2014, 63(6): 060601.(in Chinese)
崔建军, 高思田. 基于X射线掠射法的纳米薄膜厚度计量与量值溯源研究[J]. 物理学报, 2014, 63(6): 060601.

【15】Cui Jianjun. Study on metrological traceability through fabry-perot laser interferometer or atomic lattice spacing for micro displacement measurement[D]. Tianjin: Tianjin University, 2014. (in Chinese)
崔建军. 基于Fabry-Perot干涉与原子晶格间距的微位移计量及溯源研究[D]. 天津: 天津大学, 2014.

【16】Zhang Mingkai, Gao Sitian, Lu Rongsheng, et al. Ultraviolet scanning linewidth measuring system[J]. Infrared and Laser Engineering, 2015, 44(2): 625-631. (in Chinese)
张明凯, 高思田, 卢荣胜,等. 紫外扫描线宽测量系统的研究[J]. 红外与激光工程, 2015, 44(2): 625-631.

【17】Sun Licun, Meng Weidong, Li Qiang, et al. Calculation and measurement of depth of field for microscope equipped with electronic ocular[J]. Optics and Precision Engineering, 2013, 21(5): 1151-1159. (in Chinese)
孙丽存, 孟伟东, 李强, 等. 电子目镜显微镜景深的确定与测量[J]. 光学 精密工程, 2013, 21(5): 1151-1159.

引用该论文

Cui Jianjun,Du Hua,Zhu Xiaoping,Xue Zi,Yan Yonggang,Chen Kai. Measurement characteristics analysis and test of 3D laser scanning confocal microscope[J]. Infrared and Laser Engineering, 2018, 47(8): 0817005

崔建军,杜 华,朱小平,薛 梓,闫勇刚,陈 恺. 3D激光扫描共聚焦显微镜计量特性分析及测试[J]. 红外与激光工程, 2018, 47(8): 0817005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF