Photonics Research, 2018, 6 (10): 10000C29, Published Online: Sep. 6, 2018   

212-kHz-linewidth, transform-limited pulses from a single-frequency Q-switched fiber laser based on a few-layer Bi2Se3 saturable absorber

Author Affiliations
Department of Electronic Engineering, Xiamen University, Xiamen 361005, China
Abstract
Conventional Q-switched fiber lasers operating at multi-longitudinal-mode oscillation usually suffer from self-mode-locking-induced temporal instability, relatively strong noise, and low coherence. Here, we address the challenge through demonstrating, for the first time, to the best of our knowledge, a single-longitudinal-mode (SLM) Er-doped fiber (EDF) laser passively Q-switched by a few-layer Bi2Se3 saturable absorber (SA). The Bi2Se3 SA prepared by the liquid-phase exfoliation method shows a modulation depth of 5% and saturation optical intensity of 1.8 MW/cm2. A section of 1-m unpumped EDF together with a 0.06-nm-bandwidth fiber Bragg grating is used as an ultra-narrow autotracking filter to realize SLM oscillation. Stable SLM Q-switching operation at 1.55 μm is successfully achieved with the spectral linewidth as narrow as 212 kHz and the pulse duration of 2.54 μs, manifesting near-transform-limited pulses with a time-bandwidth product of 0.53. In particular, we found that the SLM Q-switching possesses the higher signal-to-noise ratios of 62 dB (optical) and 48 dB (radio frequency), exhibiting its advantages of low noise and high stability. Such an SLM Q-switched fiber laser could gain great interest for some applications in coherent detection, coherent optical communications, and high-sensitivity optical sensing.

Weiwei Li, Jinhai Zou, Yizhong Huang, Kaijie Wang, Tuanjie Du, Shuisen Jiang, Zhengqian Luo. 212-kHz-linewidth, transform-limited pulses from a single-frequency Q-switched fiber laser based on a few-layer Bi2Se3 saturable absorber[J]. Photonics Research, 2018, 6(10): 10000C29.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!