首页 > 论文 > 光子学报 > 47卷 > 6期(pp:610002--1)

基于非下采样轮廓波变换和直觉模糊集的红外与可见光图像融合

Fusion of Infrared and Visible Images Based on Non-subsampled Contourlet Transform and Intuitionistic Fuzzy Set

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对传统图像融合方法造成的边缘模糊、细节损失、图像对比度与清晰度容易降低等问题, 利用非下采样轮廓波变换, 提出一种基于直觉模糊集和区域对比度的红外与可见光图像融合算法.首先, 使用非下采样轮廓波变换将源图像分解, 分别得到源图像的高频和低频成分.其次, 利用直觉模糊集灵活准确描述模糊概念的特性, 构建双高斯隶属函数对低频成分进行融合; 利用区域对比度详细描述图像纹理信息的特点, 采用多区域特征对比度结合距离分析的融合规则, 对高频成分进行融合.最后使用非下采样轮廓波逆变换得到融合图像.实验结果表明, 与其它融合算法相比, 该算法提高了图像对比度, 保留了源图像中的边缘和细节信息, 且得到的融合结果具有更优的客观评价值.

Abstract

Considering the traditional image fusion methods easily reduce the contrast and sharpness of image, blur edge and loss details, a fusion method of infrared and visible images is proposed based on intuitionistic fuzzy set and regional contrast in the fusion framework of non-subsampled contourlet transform. Firstly, the high and low frequency components of source images are obtained by using non-subsampled contourlet transform. Then the low frequency components are combined by intuitionistic fuzzy set including double-Gaussian function due to the characteristic that intuitionistic fuzzy set can describe the fuzzy concept flexibly and accurately. The high frequency components are combined by regional features contrast and Euclidean distance method because of the feature that the method can describe the image texture information in detail. Finally the fusion image is obtained by performing inverse non-subsampled contourlet transform. The experimental results show that the proposed fusion method outperforms traditional methods which deepens the contrast of images, retains the edge and detail information in the source image, and has a better evaluation value.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/gzxb20184706.0610002

基金项目:天津市科技计划项目(No.17ZXRGGX00140)资助

收稿日期:2018-01-26

修改稿日期:2018-03-28

网络出版日期:--

作者单位    点击查看

蔡怀宇:天津大学 精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
卓励然:天津大学 精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
朱攀:天津大学 精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
黄战华:天津大学 精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
武晓宇:天津大学 精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072

联系人作者:蔡怀宇(hycai@tju.edu.cn)

备注:蔡怀宇(1965-), 女, 教授, 博士, 主要研究方向为信息光学、光电技术及仪器和图像处理等.

【1】WU Yi-quan, YIN Jun, CAO Zhao-qing. Fusion of infrared thermal wave image based on nonsubsampled shearlet transform and weighted non-negative matrix facrorization[J]. Acta Photonica Sinica, 2014, 43(10): 108-116.
吴一全, 殷骏, 曹照清. 基于非下采样Shearlet和WNMF的红外热波图像融合[J]. 光子学报, 2014, 43(10): 108-116.

【2】WU Dong-peng, BI Du-yan, HE Lin-yuan, et al. A fusion algorithm of infrared and visible image based on NSSCT[J]. Acta Optica Sinica, 2017, 37(7): 98-106.
吴冬鹏, 毕笃彦, 何林远,等. 基于NSSCT的红外与可见光图像融合[J]. 光学学报, 2017, 37(7): 98-106.

【3】BAI X. Morphological center operator based infrared and visible image fusion through correlation coefficient[J]. Infrared Physics & Technology, 2016, 76: 546-554.

【4】ZHU P, MA X, HUANG Z. Fusion of infrared-visible images using improved multi-scale top-hat transform and suitable fusion rules[J]. Infrared Physics & Technology, 2017, 81: 282-295.

【5】KONG W, LEI Y, REN M. Fusion method for infrared and visible images based on improved quantum theory model[J]. Neurocomputing, 2016, 212(2): 1637-1640.

【6】DING Wen-bin, BI Du-yan, HE Lin-yuan,et al. Fusion of infrared and visible images based on shearlet transform and neighborhood structure features[J]. Acta Optica Sinica, 2017, 37(10): 1010002.
丁文杉, 毕笃彦, 何林远,等. 基于剪切波变换和邻域结构特征的红外与可见光图像融合[J]. 光学学报, 2017, 37(10): 1010002.

【7】YU Mei-chen, SUN Yu-qiu, WANG Chao. Image fusion algorithm based on laplacian pyramid[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(34): 21-26+4.
余美晨,孙玉秋,王超.基于拉普拉斯金字塔的图像融合算法研究[J].长江大学学报(自科版),2016,13(34): 21-26+4.

【8】CHEN Zhen-yue, WANG Xia. Polarimetric and multi-spectral image fusion based on HIS color system and wavelet transform[C]. Acta Photonica Sinica, 2010, 39(s): 43-47.
陈振跃, 王霞. 基于HSI颜色空间和小波变换的多光谱图像和偏振图像融合实验研究[J]. 光子学报, 2010,39(s): 43-47.

【9】ZHU Pan, LIU Ze-yang, HUANG Zhan-hua. Infrared polarization and intensity image fusion based on dual-tree complex wavelet transform and sparse representation[J]. Acta Photonica Sinica, 2017, 46(12): 1210002.
朱攀, 刘泽阳, 黄战华. 基于DTCWT和稀疏表示的红外偏振与光强图像融合[J]. 光子学报, 2017, 46(12): 1210002.

【10】LIU Wei, YIN Ming, LUAN Jing,et al. Image fusion algorithm based on shift-invariant shearlet transform[J]. Acta Photonica Sinica, 2013, 42(4): 496-503.
刘卫, 殷明, 栾静,等. 基于平移不变剪切波变换域图像融合算法[J]. 光子学报, 2013, 42(4): 496-503.

【11】DO M, VETTERLI M. Contourlets: new directional multiresolution image representation[C]. Conference on Signals, Systems and Computers,ASILOMAR, 2002: 497-501.

【12】CUNHA A L D, ZHOU J, DO M N. The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006, 15(10): 3089.

【13】LIU Shao-peng, HAO Qun, SONG Yong,et al. Image fusion algorithm based on nonsubsampled contourlet transform and regional fractal dimension[J]. Acta Photonica Sinica, 2010, 39(8): 1388-1393.
刘少鹏, 郝群, 宋勇,等. 基于区域分维和非采样Contourlet变换的图像融合算法[J]. 光子学报, 2010, 39(8): 1388-1393.

【14】YIN Ming, PANG Ji-yong, WEI Yuan-yuan, et al. Remote sensing image fusion based on non-subsampled dual-tree complex contourlet transform and sparse representation[J]. Acta Photonica Sinica, 2016, 45(1): 0110002.
殷明, 庞纪勇, 魏远远,等. 结合NSDTCT和稀疏表示的遥感图像融合[J]. 光子学报, 2016, 45(1): 0110002.

【15】LI H, QIU H, YU Z, et al. Infrared and visible image fusion scheme based on NSCT and low-level visual features[J]. Infrared Physics & Technology, 2016, 76: 174-184.

【16】ZHU P, HUANG Z, LEI H. Fusion of infrared and visible images based on BEMD and NSDFB[J]. Infrared Physics & Technology, 2016, 77: 82-93.

【17】CAI J, CHENG Q, PENG M, et al. Fusion of infrared and visible images based on nonsubsampled contourlet transform and sparse K-SVD dictionary learning[J]. Infrared Physics & Technology, 2017, 82: 85-95.

【18】ZHANG Q, MALDAGUE X. An adaptive fusion approach for infrared and visible images based on NSCT and compressed sensing[J]. Infrared Physics & Technology, 2016, 74: 11-20.

【19】CHEN Mu-sheng, CAI Zhi-shan. Study on fusion of visual and infrared images based on NSCT[J].Laser & Optoelectronics Progress. 2015, 52(6): 114-119.
陈木生, 蔡植善. 基于NSCT的红外与可见光图像融合方法研究[J]. 激光与光电子学进展, 2015, 52(6): 114-119.

【20】WANG Jun, PENG Jin-ye, HE Gui-qing,et al. Fusion method for visible and infrared images based on non-subsampled contourlet transform and sparse representation[J]. Acta Armamentarii. 2013, 34(7): 815-820.
王珺, 彭进业, 何贵青,等. 基于非下采样Contourlet变换和稀疏表示的红外与可见光图像融合方法[J]. 兵工学报, 2013, 34(7): 815-820.

【21】LIU Xian-hong, CHEN Zhi-bin.Fusion of infrared and visible images based on multi-scale directional guided filter and convolution[J]. Acta Optica Sinica, 2017, 37(11): 103-112.
刘先红, 陈志斌. 基于多尺度方向引导滤波和卷积稀疏表示的红外与可见光图像融合[J]. 光学学报, 2017, 37(11): 103-112.

【22】ZHU Pan, HUANG Zhan-hua. Fusion of infrared and visible images based on BEMD and GFL[J].Journal of Optoelectronics Laser, 2017(10): 1156-1162.
朱攀, 黄战华. 基于二维经验模态分解和高斯模糊逻辑的红外与可见光图像融合[J]. 光电子·激光, 2017(10): 1156-1162.

【23】PAN Yun, ZHAO Xi-ling. Fusion ofgaussian fuzzy logic on NSST domain[J]. Applied Laser, 2016(3): 351-356.
潘贇, 赵喜玲. NSST域高斯模糊逻辑的图像融合[J]. 应用激光, 2016(3): 351-356.

【24】GE Wen, JI Peng-chong, ZHAO Tian-chen,et al. Infrared and visible light images fusion of fuzzy logic on NSST domain[J]. Laser Technology, 2016, 40(6): 892-896.
葛雯, 姬鹏冲, 赵天臣. NSST域模糊逻辑的红外与可见光图像融合[J]. 激光技术, 2016, 40(6): 892-896.

【25】TAN Hai-pei, GONG Qing-ge, LIU Man, et al. Infrared image enhancement algorithm based on NSST and fuzzy membership[J]. Laser Journal, 2017, 38(7): 88-93.
谭海佩, 巩青歌, 刘曼,等. 基于NSST和模糊隶属度的红外图像增强算法[J]. 激光杂志, 2017, 38(7): 88-93.

【26】ANANTHI V P, BALASUBRAMANIAM P. Image fusion using interval-valued intuitionistic fuzzy sets[J].International Journal of Image & Data Fusion, 2015, 6(3): 249-269.

【27】WU Zhen-hua, Thedigital image processing based on fuzzy theory[D]. Changsha: Changsha University of Science and Technology, 2010, 9: 2-3.
吴振华. 基于模糊数学理论的数字图像处理[D]. 长沙: 长沙理工大学, 2010, 9: 2-3.

【28】LI Deng-feng.Intuitionistic fuzzy set decision and countermeasure analysis[M]. National Defend Industry Press, 2012: 65-73.
李登峰. 直觉模糊集决策与对策分析方法[M]. 国防工业出版社, 2012: 65-73.

【29】LEI Ying-jie. Intuitionistic fuzzy set theory and application[M]. Science Press, 2013: 1-18.
雷英杰. 直觉模糊粗糙集理论及应用[M]. 科学出版社, 2013: 1-18.

【30】ZHENG Yi-jun, REN Xian-yi, LIU Xiu-jian. A method of image fusion based onnon-subsampled contourlet transform and fuzzy logic[J]. Computer Engineering and Applications, 2011, 47(11): 171-174.
郑义军, 任仙怡, 刘秀坚,等. 基于NSCT与模糊逻辑的图像融合方法[J]. 计算机工程与应用, 2011, 47(11): 171-174.

【31】FENG Hong-chen.Image fusion of infrared and visible based the DTCWT[D]. Changchun: Changchun University of Science and Technology, 2013: 25-30.
冯宏臣. 基于双树复小波域的红外和可见光图像融合[D]. 长春: 长春理工大学, 2013: 25-30.

【32】ZHANG Jing-lei, ZHAO E-ying. Fusion method for infrared and visible light images based on NSCT[J].Laser and Infrared, 2013, 43(3): 319-323.
张惊雷, 赵俄英. 基于NSCT的红外与可见光图像融合方法[J]. 激光与红外, 2013, 43(3): 319-323.

【33】YAN Jia-liang.Fusion of infrared and visible image based on wavelet transform[J]. Electronic Technology, 2017(16): 120-120.
颜家亮. 基于小波变换的红外与可见光图像的融合[J]. 电子技术与软件工程, 2017(16): 120-120.

【34】SUN Xiao-long, WANG Zheng-yong, FU Yao-qing, et al. Fast image fusion based on sum of modified laplacian[J]. Computer Engineering and Applications, 2015, 51(5): 193-197.
孙晓龙, 王正勇, 符耀庆,等. 基于改进拉普拉斯能量和的快速图像融合[J]. 计算机工程与应用, 2015, 51(5): 193-197.

引用该论文

CAI Huai-yu,ZHUO Li-ran,ZHU Pan,HUANG Zhan-hua,WU Xiao-yu. Fusion of Infrared and Visible Images Based on Non-subsampled Contourlet Transform and Intuitionistic Fuzzy Set[J]. ACTA PHOTONICA SINICA, 2018, 47(6): 0610002

蔡怀宇,卓励然,朱攀,黄战华,武晓宇. 基于非下采样轮廓波变换和直觉模糊集的红外与可见光图像融合[J]. 光子学报, 2018, 47(6): 0610002

被引情况

【1】王光霞,冯华君,徐之海,李奇,陈跃庭. 基于块匹配的低光度图像对融合方法. 光子学报, 2019, 48(4): 410003--1

【2】江泽涛,何玉婷,张少钦. 一种基于对比度增强和柯西模糊函数的红外与弱可见光图像融合算法. 光子学报, 2019, 48(6): 610001--1

【3】邓辉,王长龙,胡永江,张玉华. 基于非下采样双树复轮廓波与自适应分块的红外与可见光图像融合. 光子学报, 2019, 48(7): 710006--1

【4】苏金凤,张贵仓,汪凯. 结合鲁棒主成分分析和非下采样轮廓波变换的红外与可见光图像的压缩融合. 激光与光电子学进展, 2020, 57(4): 41005--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF