首页 > 论文 > 激光与光电子学进展 > 55卷 > 9期(pp:91001--1)

数字图像相关法中一种动态应变子区选择算法

An Dynamic Strain Subset Selection Algorithm in Digital Image Correlation Method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

数字图像相关法测量具有非接触式、全场测量、结构简单等优点而得到广泛研究和应用。传统的应变场计算方法以位移场局部最小二乘拟合过程为核心, 使用全场统一的子区大小进行计算。在非均匀变形测量过程中, 这种计算方式存在较大的算法误差。较大的应变子区会使局部的变形梯度平滑, 而较小的应变子区不能对位移场误差进行有效地抑制。因此, 根据位移场局部梯度强度提出了一种位移场修正和动态选择应变计算子区大小的方法, 并且模拟生成散斑图像进行仿真。结果表明:所提方法有效降低了数字图像相关法在非均匀变形测量过程中的计算误差, 同时系统精度也得到提升。基于位移场局部梯度强度的动态子区选择算法原理简单, 计算准确度高。

Abstract

Digital image correlation method is widely studied and applied due to its advantages, such as non-contact, whole measurement, and simple structure. The traditional calculation method of strain fields takes the local least squares fitting process of the displacement field as the core, and uses the unified subset size of the whole field to be calculated. However, there is a biggish algorithm error in the process of heterogeneous deformation measurement. Larger strain subset size will smooth local deformation gradient, while smaller strain subset size cannot effectively reduce the displacement field error. Therefore, according to the local gradient intensity of the displacement field, a novel algorithm is proposed to correct displacement fields and dynamic select the strain for calculating the subset size, and simulate the results of the speckle images. The results show that the proposed method effectively reduces the calculation error of the digital image correlation method in heterogeneous deformation, and while the system precision is improved. The dynamic subset selection algorithm based on the local gradient intensity of the displacement fields has a simple principle and high calculation accuracy.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O348.1;TP391

DOI:10.3788/lop55.091001

所属栏目:图像处理

基金项目:航空科学基金(20170923001)

收稿日期:2018-01-12

修改稿日期:2018-03-26

网络出版日期:2018-04-02

作者单位    点击查看

王莹:南京航空航天大学能源与动力学院, 江苏 南京 210016
沈峘:南京航空航天大学能源与动力学院, 江苏 南京 210016
夏瀚笙:南京航空航天大学能源与动力学院, 江苏 南京 210016
刘敦强:南京航空航天大学能源与动力学院, 江苏 南京 210016

联系人作者:沈峘(huan_shen@nuaa.edu.cn); 王莹(ywang060@163.com);

【1】Liu C, Dai Y T, Dai M L, et al. by Two-dimensional multi-camera full-field digital image correlation deformation measurement method[J]. Acta Optica Sinica, 2016, 36(12): 1212002.
刘聪, 戴云彤, 戴美玲, 等. 二维多相机全场数字图像相关变形测量方法[J]. 光学学报, 2016, 36(12): 1212002.

【2】Pataky G J, Sehitoglu H. Experimentalmethodology for studying strain heterogeneity with microstructural data from high temperature deformation[J]. Experimental Mechanics, 2015, 55(1): 53-63.

【3】O′Connor S J, Nowell D, Dragnevski K I. Measurement of fatigue crack deformation on the macro- and micro-scale: uniform and non-uniform loading[J]. International Journal of Fatigue, 2016, 89:66-76.

【4】Shan B H, Huo X Y, Liu Y. Astereovision measurement method using epipolar constraint to correct digital image correlation matching[J]. Chinese Journal of Lasers, 2017, 44(8): 0804003.
单宝华, 霍晓洋, 刘洋. 一种极线约束修正数字图像相关匹配的立体视觉测量方法[J]. 中国激光, 2017, 44(8): 0804003.

【5】Jerlhag E, Weinland C, Porcu P, et al. On the use of the digital image correlation method for heterogeneous deformation measurement of porous solids[J]. Optics & Lasers in Engineering, 2011, 49(2): 200-209.

【6】Sun Y F, Pang J H L. Study of optimal subset size in digital image correlation of speckle pattern images[J]. Optics and Lasers in Engineering, 2007, 45(9): 967-974.

【7】Pan B, Xie H, Wang Z, et al. Study on subset size selection in digital image correlation for speckle patterns[J]. Optics Express, 2008, 16(10): 7037-7048.

【8】Pan B, Wu D F, Xie H M, et al. Spatial-gradient-based digital volume correlation technique for internal deformation measurement[J]. Acta Optica Sinica, 2011, 31(6): 120-126.
潘兵, 吴大方, 谢惠民, 等. 基于梯度的数字体图像相关方法测量物体内部变形[J]. 光学学报, 2011, 31(6): 120-126.

【9】Hassan G M, Macnish C, Dyskin A, et al. Digital image correlation with dynamic subset selection[J]. Optics and Lasers in Engineering, 2016, 84: 1-9.

【10】Zhan Q, Yuan Y, Fan X T, et al. Digital image correlation involves an inverse problem: A regularization scheme based on subset size constraint[J]. Optics and Lasers in Engineering, 2016, 81: 54-62.

【11】Yuan Y, Huang J Y, Peng X L, et al. Accurate displacement measurement via a self-adaptive digital image correlation method based on a weighted ZNSSD criterion[J]. Optics and Lasers in Engineering, 2014, 52(1): 75-85.

【12】Wittevrongel L, Debruyne D, Lomov S V, et al. Implementation of convergence in adaptive global digital image correlation[J]. Experimental Mechanics, 2016, 56(5): 797-811.

【13】Wittevrongel L, Lava P, Lomov S V, et al. A self adaptive global digital image correlation algorithm[J]. Experimental Mechanics, 2015, 55(2): 361-378.

【14】Huang J, Pan X, Peng X, et al. Digital image correlation with self-adaptive Gaussian windows[J]. Experimental Mechanics, 2013, 53(3): 505-512.

【15】Lowe D G. Distinctiveimage features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

【16】Sutton M A, Mingqi C Q, Peters W H, et al. Application of an optimized digital correlation method to planar deformation analysis[J]. Image and Vision Computing, 1986, 4(3): 143-150.

【17】Yu Z J, Wang S B. Improve PCA-SIFT algorithm for matching stereo system[J]. Laser & Optoelectronics Progress, 2016, 53(3): 031501.
于之靖, 王韶彬. 改进PCA-SIFT算法的立体匹配系统[J]. 激光与光电子学进展, 2016, 53(3): 031501.

【18】Pan B, Xie H M. Full-field strain measurement based on least square fitting of local displacement for digital image correlation method[J]. Acta Optica Sinica, 2007, 27(11): 1980-1986.
潘兵, 谢惠民. 数字图像相关中基于位移场局部最小二乘拟合的全场应变测量[J]. 光学学报, 2007, 27(11): 1980-1986.

【19】Mao J G, Zhang P Z, Shen H, et al. Reverse mapping for generating simulated deformed speckle patterns[J]. Journal of Optoelectronics·Laser, 2015, 26(12): 2433-2439.
毛建国, 张佩泽, 沈峘,等. 基于反向映射法逆向描述数字散斑变形的方法[J]. 光电子·激光, 2015, 26(12): 2433-2439.

【20】Cofaru C, Philips W, Paepegem W V. A novel speckle pattern—adaptive digital image correlation approach with robust strain calculation[J]. Optics and Lasers in Engineering, 2012, 50(2): 187-198.

【21】Wu R, Kong C, Li K, et al. Real-time digital image correlation for dynamic strain measurement[J]. Experimental Mechanics, 2016, 56(5): 1-11.

引用该论文

Wang Ying,Shen Huan,Xia Hansheng,Liu Dunqiang. An Dynamic Strain Subset Selection Algorithm in Digital Image Correlation Method[J]. Laser & Optoelectronics Progress, 2018, 55(9): 091001

王莹,沈峘,夏瀚笙,刘敦强. 数字图像相关法中一种动态应变子区选择算法[J]. 激光与光电子学进展, 2018, 55(9): 091001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF