首页 > 论文 > 激光与光电子学进展 > 55卷 > 9期(pp:91602--1)

基于等离子体超材料的超宽带吸波体设计

Ultra-Broadband Absorber Based on Plasma Metamaterials

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了在横电(TE)波下获得可调谐的超宽带吸收频谱以及在横磁(TM)波下获得较高的反射率, 利用等离子体超材料和集总电阻设计了一种电磁吸波体, 并采用全波仿真法对其吸收率、反射率、表面电场图、表面电流图和能量损耗图进行了计算, 讨论了其结构参数及电阻对吸收率和反射率的影响。研究结果表明, 通过激励不同的等离子体谐振区域, 不但能改善吸收特性, 还能获得可调谐的吸收频谱; 设计的电磁吸波体不仅能实现对TE波的超宽带吸收, 还能实现TE波和TM波的极化分离。

Abstract

In order to obtain a tunable ultra-broadband absorption spectrum under transverse electric (TE) waves and a high reflectivity under transverse magnetic (TM) waves, an electromagnetic absorber is designed based on the plasma metamaterials and the lumped resistors. Its absorptivity, reflectivity, surface electric field diagram, surface current diagram and energy loss diagram are calculated by the full wave simulation method. The influences of its structural parameters and resistance on the absorptivity and reflectivity are investigated. The research results show that, by means of the excitation for different plasma resonance ranges, not only the absorption property is improved, but also the tunable absorption spectrum can be obtained. As for the designed electromagnetic absorber, not only the ultra-broadband absorption of TE waves can be realized, but also the polarization splitting of TE and TM waves can be achieved.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/lop55.091602

所属栏目:材料

基金项目:中国博士后特优资助项目(2016T90455)、中国博士后面上项目(2015M581790)、江苏省博士后面上项目(1501016A)、南京邮电大学引进人才科研启动基金(高水平师资)(NY217131)

收稿日期:2018-03-05

修改稿日期:2018-03-22

网络出版日期:2018-04-04

作者单位    点击查看

杨靖:南京邮电大学电子与光学工程学院 微电子学院, 江苏 南京 210023
章海锋:南京邮电大学电子与光学工程学院 微电子学院, 江苏 南京 210023南京邮电大学电子科学与技术国家级实验教学示范中心, 江苏 南京 210023南京邮电大学信息电子技术国家级虚拟仿真实验教学中心, 江苏 南京 210023
张浩:南京邮电大学电子与光学工程学院 微电子学院, 江苏 南京 210023
刘佳轩:南京邮电大学电子与光学工程学院 微电子学院, 江苏 南京 210023

联系人作者:章海锋(hanlor@163.com); 杨靖(2370261972@qq.com);

【1】Li Y, Mo W C, Yang Z G, et al. Generation of terahertz vortex beams base on metasurface antenna array[J]. Laser Technology, 2017, 41(5): 644-648.
李瑶, 莫伟成, 杨振刚, 等. 利用超表面天线阵列产生太赫兹涡旋光束[J]. 激光技术, 2017, 41(5): 644-648.

【2】Fan Q B, Xu T. Research progress of imaging technologies based on electromagnetic metasurfaces[J]. Acta Physica Sinica, 2017, 66(14): 144208.
范庆斌, 徐挺. 基于电磁超表面的透镜成像技术研究进展[J]. 物理学报, 2017, 66(14): 144208.

【3】Huang X C, Fu Q H, Zhang F L. Research advances of metasurface[J]. Aero Weaponry, 2016(1): 28-34.
黄新朝, 付全红, 张富利. 超表面研究进展[J]. 航空兵器, 2016(1): 28-34.

【4】Liu D L, Liu P A, Yang Q S, et al. Research status and development trend of absorbing materials[J]. Materials Guide, 2013, 27(17): 74-78.
刘丹莉, 刘平安, 杨青松, 等. 吸波材料的研究现状及其发展趋势[J]. 材料导报, 2013, 27(17): 74-78.

【5】Pang J F, Ma X J, Xie X Y. Research progress of electromagnetic wave absorbing materials[J]. Electronic Components and Materials, 2015, 34(2): 7-12, 16.
庞建峰, 马喜军, 谢兴勇. 电磁吸波材料的研究进展[J]. 电子元件与材料, 2015, 34(2): 7-12, 16.

【6】Wang H T L.Theoretical analysis of wide-angle metamaterial absorber[D]. Chengdu: University of Electronic Science and Technology, 2014: 1-3.
王黄腾龙. 宽入射角电磁超介质吸波材料吸波机理研究[D]. 成都: 电子科技大学, 2014: 1-3.

【7】Zhang J, Zhang W Y, Xi Z P. Research progress of stealth microwave absorbing materials[J]. Rare Metal Materials and Engineering, 2008, 37(S4): 504-508.
张健, 张文彦, 奚正平, 等. 隐身吸波材料的研究进展[J]. 稀有金属材料与工程, 2008, 37(S4): 504-508.

【8】Liu X X, Chen X, Wang X J, et al. Research progress of magnetic absorbing materials[J]. Surface Technology, 2013, 42(4): 104-109.
刘祥萱, 陈鑫, 王煊军, 等. 磁性吸波材料的研究进展[J]. 表面技术, 2013, 42(4): 104-109.

【9】Yang H H, Cao X Y, Gao J, et al. An ultrathin wave absorbing material and its application in slot antenna[J]. Journal of Electronics and Information Technology, 2012, 34(11): 2790-2794.
杨欢欢, 曹祥玉, 高军, 等. 一种超薄吸波材料及其在缝隙天线中的应用[J]. 电子与信息学报, 2012, 34(11): 2790-2794.

【10】Li B P, Wang C G, Wang W. Research progress of carbon absorbing materials[J]. Materials Review, 2012, 26(7): 9-14.
李斌鹏, 王成国, 王雯. 碳基吸波材料的研究进展[J]. 材料导报, 2012, 26(7): 9-14.

【11】Pitarke J M, Silkin V M, Chulkov E V, et al. Theory of surface plasmons and surface-plasmon polaritons[J]. Reports on Progress in Physics, 2006, 70(1): 1-87.

【12】Lei J G, Liu T H, Lin J Q, et al. New applications of surface plasmon polaritons[J]. Chinese Journal of Optics and Applied Optics, 2010, 3(5): 432-439.
雷建国, 刘天航, 林景全, 等. 表面等离子体激元的若干新应用[J]. 中国光学与应用光学, 2010, 3(5): 432-439.

【13】Landy N I, Saiuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

【14】Landy N I, Bingham C M, Tyler T, et al. Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging[J]. Physical Review B: Condensed Matter & Materials Physics, 2008, 79(12): 125104.

【15】Mias C, Yap J H. Avaractor-tunable high impedance surface with a resistive-lumped-element biasing grid[J]. IEEE Transactions Antennas Propagation, 2007, 55(7): 1955-1962.

【16】Gu C, Qu S B, Pei Z B, et al. Planar metamaterial absorber based on lumped elements[J]. Chinese Physics Letters, 2010, 27(11): 117802.

【17】Cheng Y Z, Wang Y, Nie Y, et al. Design fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements[J]. Journal of Applied Physics, 2012, 111(4): 044902.

【18】Bai Z Y, Jiang X W, Zhang L. Ultra-thin metamaterial absorber for electromagnetic window shielding[J]. Acta Optica Sinica, 2017, 37(8): 0816003.
白正元, 姜雄伟, 张龙. 超薄电磁屏蔽光窗超材料吸波器[J]. 光学学报, 2017, 37(8): 0816003.

【19】Zhou Y G, Li M Q, Pan X. Broadband absorber based on metamaterials[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121602.
周永光, 李民权, 潘旭. 基于超材料的宽频带吸波体[J]. 激光与光电子学进展, 2017, 54(12): 121602.

【20】Shen C C, Li M Q, Zhou Y G, et al. Novel structure design of left-handed material with broadband and low loss[J]. Laser & Optoelectronics Progress, 2017, 54(9): 091602.
沈纯纯, 李民权, 周永光, 等. 一种新型的宽频带低损耗左手材料结构设计[J]. 激光与光电子学进展, 2017, 54(9): 091602.

【21】Liu Q N, Dai H X. Absorption properties of polarized light Tamm state in metal-photonic crystal-metal structure[J]. Laser Technology, 2017, 41(2): 205-209.
刘启能, 代洪霞. 金属-光子晶体-金属结构中偏振光Tamm态的吸收特性[J]. 激光技术, 2017, 41(2): 205-209.

【22】Liu L Y, Zhang Z J, Liu L X. Research onbroadband metamaterial absorber based on lumped resistance[J]. Journal of Microwaves, 2016, 32(5): 50-54.
刘凌云, 张政军, 刘力鑫. 基于集总电阻的宽频带超材料吸波器研究[J]. 微波学报, 2016, 32(5): 50-54.

【23】Li S J, Cao X Y, Gao J, et al. Analysis and design of three-layer perfect metamaterial-inspired absorber based on double split-serration-rings structure[J]. IEEE Transactions on Antennas & Propagation, 2015, 63(11): 5155-5160.

【24】Zou T B, Hu F R, Xiao J, et al. Design of a polarization-insensitive and broadband terahertz absorber using metamaterials[J]. Acta Physica Sinica, 2014, 63(17): 178103.
邹涛波, 胡放荣, 肖靖, 等. 基于超材料的偏振不敏感太赫兹宽带吸波体设计[J]. 物理学报, 2014, 63(17): 178103.

【25】Xu X C. Research of lateral SPiN solid plasma dipole antenna[D]. Xi′an: Xidian University, 2015: 14-18.
许小仓. 横向SPiN二极管及其等离子体超材料特性[D]. 西安: 西安电子科技大学, 2015: 14-18.

【26】Yu Z Y. Solid plasma reconstruction antenna design and implementation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 4-5.
余志洋. 等离子体超材料重构天线设计与实现[D]. 南京: 南京航空航天大学, 2016: 4-5.

【27】Shi X Z, Liu S B, Kong X K. Reconfigurable antenna design based on solid state plasma S-PIN diode[C]∥Proceedings of the 2017 National Antenna Annual Conference. Beijing : Chinese Institute of Electronics, 2017: 3.
史向柱, 刘少斌, 孔祥鲲. 基于固态等离子体S-PIN二极管的可重构天线设计[C]∥2017年全国天线年会论文集. 北京: 中国电子学会, 2017: 3.

引用该论文

Yang Jing,Zhang Haifeng,Zhang Hao,Liu Jiaxuan. Ultra-Broadband Absorber Based on Plasma Metamaterials[J]. Laser & Optoelectronics Progress, 2018, 55(9): 091602

杨靖,章海锋,张浩,刘佳轩. 基于等离子体超材料的超宽带吸波体设计[J]. 激光与光电子学进展, 2018, 55(9): 091602

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF