首页 > 论文 > 中国激光 > 45卷 > 9期(pp:911005--1)


Research and Progress of Flow Field Diagnosis Based on Laser Absorption Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文


可调谐激光吸收光谱(TDLAS)技术作为一种先进的光谱检测手段已经被广泛应用于燃烧流场和风洞环境的过程诊断中, 它可以实现流场温度、组分浓度、气流速度等多参数的在线精确测量。介绍了TDLAS技术的基本原理及其在流场参数测量领域的发展历程, 总结了近几年来在超燃冲压发动机、航空涡轮发动机以及超声速风洞等流场参数测量方面所开展的TDLAS应用实例, 着重介绍了在实验室和外场环境中就流速的高精度测量、燃烧场温度和组分的连续监测、场分布的准确反演所做的研究工作。同时概述了激光吸收光谱流场诊断技术的发展水平、目前已经取得的最新研究进展以及还存在的相关问题, 最后展望了TDLAS技术在流场诊断领域的应用前景和未来的发展趋势。


Tunable diode laser absorption spectroscopy (TDLAS), as an advanced spectral detection method, has been widely used in the process diagnosis of combustion flow field and wind tunnel environment. It can realize multiple parameters accurate online measurement, such as flow field temperature, species concentration, and airflow velocity. This review introduces the basic principle of TDLAS and its development history in the field of flow field parameter measurement, summarizes the TDLAS flow field application examples in recent years such as scramjet engines, aviation turbine engines and supersonic wind tunnels, mainly focusing on high-precision measurement of flow velocity, continuous monitoring of combustion temperature and species, accurate inversion of field distribution in laboratory and outfield. The development level of laser absorption spectroscopy flow field diagnostic technology, and the latest research progress and related problems that still exist are summarized at the same time. Finally, the application prospect and future trend of TDLAS technology in flow field diagnosis area are anticipated.

广告组1 - 空间光调制器+DMD




基金项目:国家重点研发计划(2017YFC0804900, 2016YFC0302300)




作者单位    点击查看

阚瑞峰:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
夏晖晖:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
许振宇:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
姚路:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
阮俊:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
范雪丽:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031


【1】Xu M H, Yan R, Zheng C G, et al. Status of trace element emission in a coal combustion process: a review[J]. Fuel Processing Technology, 2004, 85(2/3): 215-237.

【2】Fu G. Study on the emission characteristic of polycyclic aromatic hydorcarbons from coal combustion[D]. Hangzhou: Zhejiang University, 2002.
傅钢. 煤燃烧过程中多环芳烃类有机污染物排放特性的研究[D]. 杭州: 浙江大学, 2002.

【3】Wang F, Xiao J F, Wang W, et al. Influence of combustion on pollutant discharge of gas turbines[J]. Thermal Power Generation, 2015, 44(5): 26-29.
王峰, 肖俊峰, 王玮, 等. 燃气轮机燃烧过程中污染物排放影响规律研究[J]. 热力发电, 2015, 44(5): 26-29.

【4】Flack R D. Fundamentals of jet propulsion with applications[M]. London: Cambridge University Press, 2005.

【5】Mohamed A, Rosier B, Henry D, et al. Tunable diode laser measurements on nitric oxide in a hypersonic wind tunnel[J]. AIAA Journal, 1996, 34(3): 494-499.

【6】Arimoto H, Takeuchi N, Mukaihara S, et al. Applicability of tdlas gas detection technique to combustion control and emission monitoring under harsh environment[J]. International Journal of Technology, 2011, 2(1): 1-9.

【7】Hiers R, MacKinnon H. Validation of stream thrust probes for direct-connect turbine engine testing[C]∥40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Fort Lauderdale, Florida, 11-14 July, 2004: 3547.

【8】Chen Y, Chen C. Rectification control points selection method of triangle mesh in optical pressure measurement of wind-tunnel test[J]. Review of Scientific Instruments, 2014, 85(8): 085108.

【9】Ehn A, Zhu J J, Li X S, et al. Advanced laser-based techniques for gas-phase diagnostics in combustion and aerospace engineering[J]. Applied Spectroscopy, 2017, 71(3): 341-366.

【10】Zheng L J, Li P, Qin R F, et al. Research situation and developing tendency for optical measurement technology of gas density[J]. Laser & Optoelectronics Progress, 2008, 45(8): 24-32.
郑龙江, 李鹏, 秦瑞峰, 等. 气体浓度检测光学技术的研究现状和发展趋势[J]. 激光与光电子学进展, 2008, 45(8): 24-32.

【11】Zhuang F C, Li M L, Zhao Y X, et al. Combustion diagnosis technology based on spectroscopy measurements[J]. Journal of the Academy of Equipment Command & Technology, 2002, 13(4): 32-36.
庄逢辰, 李麦亮, 赵永学, 等. 基于光谱测量的燃烧诊断技术[J]. 装备指挥技术学院学报, 2002, 13(4): 32-36.

【12】Kaldvee B, Brackmann C, Ehn A, et al. Development of new laser-based concepts for diagnostic challenges in combustion research[C]∥Applications of Lasers for Sensing and Free Space Communications, Paris, France, 2013. LTh3B.

【13】Seitzman J M, Kychakoff G, Hanson R K. Instantaneous temperature field measurements using planar laser-induced fluorescence[J]. Optics Letters, 1985,10(9): 439-441.

【14】Yoo J, Mitchell D, Davidson D F, et al. Planar laser-induced fluorescence imaging in shock tube flows[J]. Experiments in Fluids, 2010, 49(4): 751-759.

【15】Barlow R S, Wang G H, Anselmo-Filho P, et al. Application of Raman/Rayleigh/LIF diagnostics in turbulent stratified flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 945-953.

【16】Limbach C M, Miles R B. Rayleigh scattering measurements of heating and gas perturbations accompanying femtosecond laser tagging[J]. AIAA Journal, 2017, 55(1): 112-120.

【17】Miles R B, Lempert W R, Forkey J N. Laser rayleigh scattering[J]. Measurement Science and Technology, 2001, 12(5): R33-R51.

【18】Cheng J X, Xie X S. Coherent anti-stokes Raman scattering microscopy: instrumentation, theory, and applications[J]. The Journal of Physical Chemistry B, 2004, 108(3): 827-840.

【19】Roy S, Gord J R, Patnaik A K. Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows[J]. Progress in Energyand Combustion Science, 2010, 36(2): 280-306.

【20】Yan F, Rinoshika A. Application of high-speed PIV and image processing to measuring particle velocity and concentration in a horizontal pneumatic conveying with dune model[J]. Powder Technology, 2011, 208(1): 158-165.

【21】Wang H L, Wang Y. Micro-PIV: a new development of particle image velocimetry[J]. Advances in Mechanics, 2005, 35(1): 77-90.
王昊利, 王元. Micro-PIV技术-粒子图像测速技术的新进展[J]. 力学进展, 2005, 35(1): 77-90.

【22】Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1998, 54(2): 197-236.

【23】Hanson R K, Jeffries J B. Advances in laser-based sensors for propulsion systems[C]. 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, Oregon, June 2004. AIAA 2004-2476.

【24】Zeller W, Naehle L, Fuchs P, et al. DFB lasers between 760 nm and 16 μm for sensing applications[J]. Sensors, 2010, 10(4): 2492-2510.

【25】Allen M G. Diode laser absorption sensors for gas-dynamic and combustion flows[J]. Measurement Scienceand Technology, 1998, 9(4): 545-562.

【26】Schultz I A, Goldenstein C S, Jeffries J B, et al. Spatially-resolved TDLAS measurements of temperature, H2O column density, and velocity in a direct-connect scramjet combustor[C]. 52nd Aerospace Sciences Meeting, AIAA SciTech Forum, National Harbor, Maryland, 2014. AIAA 2014-1241.

【27】Chen X, Kan R F, Yang C G, et al. Precise measurement of air pressure using tunable diode laser absorption spectroscopy technology[J]. Journal of Optoelectronics Laser, 2015, 26(4): 719-723.
陈祥, 阚瑞峰, 杨晨光, 等. 基于TDLAS技术的空气气压精确测量[J]. 光电子·激光, 2015, 26(4): 719-723.

【28】Jia L Q, Liu W Q, Kan R F, et al. Oxygen mass flow detection method in supersonic flow based on TDLAS[J]. Acta Photonica Sinica, 2015, 44(7): 0730001.
贾良权, 刘文清, 阚瑞峰, 等. 采用TDLAS的超音速气流中氧气质量流量检测法[J]. 光子学报, 2015, 44(7): 0730001.

【29】Jia L Q, Liu W Q, Kan R F, et al. Study on oxygen velocity measurement in wind tunnel by wavelength modulation- TDLAS technology[J]. Chinese Journal of Lasers, 2015, 42(7): 0715001.
贾良权, 刘文清, 阚瑞峰, 等. 波长调制-TDLAS技术测量风洞中氧气流速方法研究[J]. 中国激光, 2015, 42(7): 0715001.

【30】Yao L, Li H, Liu W Q, et al. Development of a rapid response miniaturized CO2 monitoring system based on TDLAS[C]∥National Conference on Environmental Optics, Hefei, Anhui, 2012.
姚路, 李晗, 刘文清, 等. 一种基于TDLAS的快速响应小型化CO2监测系统的研制[C]∥全国环境光学学术会议, 安徽, 合肥, 2012.

【31】Yao L, Liu W Q, Kan R F, et al. Research and development of a compact TDLAS system to measure scramjet combustion temperature[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1): 71-76.
姚路, 刘文清, 阚瑞峰, 等. 小型化TDLAS发动机测温系统的研究及进展[J]. 实验流体力学, 2015, 29(1): 71-76.

【32】Yao L, Liu W Q, Liu J G, et al. Measurements of CO2 concentration profile in troposphere based on balloon-borne TDLAS system[J]. Spectroscopy and Spectral Analysis, 2015, 35(10): 2787-2791.
姚路, 刘文清, 刘建国, 等. 球载TD LAS的对流层CO2浓度廓线探测[J]. 光谱学与光谱分析, 2015, 35(10): 2787-2791.

【33】Jackson K, Gruber M, Buccellato S. HIFiRE flight 2 project overview and status update 2011[C]∥17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 11-14 April, 2011, San Francisco, California, 2011: 2202.

【34】Bain, James R P. Near infrared tunable diode laser spectroscopy for aero engine related applications[D]. Glasgow: University of Strathclyde, 2012.

【35】Brown M, Barone D, Barhorst T, et al. TDLAS-based measurements of temperature, pressure, and velocity in the isolator of an axisymmetric scramjet[C]∥46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, 2013. AIAA 2013-6989.

【36】Guo J X, Liu W H, Xu Z Y, et al. TDLAS-based measurements of temperaure and velocity in the combustor of scarmjet[C]∥Proceedings of 6th Asia Propulsion and Power International Conference, Xi′an, Beijing: China Engineering Thermophysics Society, 2012.

【37】Li F, Yu X L, Gu H, et al. Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors[J]. Applied Optics, 2011, 50(36): 6697-6707.

【38】Sappey A D, Masterson P, Huelson E, et al. Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software[J]. Combustion Science and Technology, 2011, 183(11): 1282-1295.

【39】Zhang Y W. Molecular spectroscopy[M]. Hefei: Press of University of Science and Technology of China, 1988.
张允武. 分子光谱学[M]. 合肥: 中国科技大学出版社, 1988.

【40】Li H. Near-infrared diode laser absorption spectroscopy with applications to reactive systems and combustion control[D]. Palo Alto: Stanford University, 2007.

【41】Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013, 130(11): 4-50.

【42】Xu Z Y. Research on temperature measurement and 2D distribution for transient combustion process by infrared absorption spectroscopy[D]. Hefei: University of Chinese Academy of Sciences, 2012.
许振宇. 瞬态燃烧过程红外激光光谱温度场测量与重构方法研究[D]. 合肥: 中国科学院大学, 2012.

【43】Lins B, Zinn P, Engelbrecht R, et al. Simulation-based comparison of noise effects in wavelength modulation spectroscopy and direct absorption TDLAS[J]. Applied Physics B, 2010, 100(2): 367-376.

【44】Nagali V, Chou S I, Baer D S, et al. Tunable diode-laser absorption measurements of methane at elevated temperatures[J]. Applied Optics, 1996, 35(21): 4026.

【45】Tang Y Y, Liu W Q, Kan R F, et al. Direct absorption measurement of ambient nitric oxide based on room-temperature pulsed quantum cascade laser[J]. Proceedings of SPIE, 2010, 7656: 76565F

【46】Duan J H, Jin X, Wang G Y, et al. Measurement of gas pressure based on direct absorption spectroscopy[J]. Physics Experimentation, 2016, 36(4): 7-11.
段金虎, 金星, 王广宇, 等. 基于直接吸收光谱测量气体的压强[J]. 物理实验, 2016, 36(4): 7-11.

【47】Yang B, Pan K W, Yang H N, et al. Discussion on the application of combustion diagnostics by wavelength scanning direct absorption spectrometry[J]. Journal of University of Shanghai for Science and Technology, 2015(5): 445-449.
杨斌, 潘科玮, 杨荟楠, 等. 波长扫描直接吸收光谱法燃烧诊断技术适用情况讨论[J]. 上海理工大学学报, 2015(5): 445-449.

【48】Cai T, Wang G, Jia H, et al. Temperature and water concentration measurements in combustion gases using a DFB diode laser at 1.4 μm[J]. Laser Physics, 2008, 18(10): 1133-1142.

【49】He Q, Dang P, Liu Z, et al. TDLAS-WMS based near-infrared methane sensor system using hollow-core photonic crystal fiber as gas-chamber[J]. Optical & Quantum Electronics, 2017, 49(3): 115.

【50】Liu J T C, Jeffries J B, Hanson R K. Wavelength modulation absorption spectroscopy with 2f detection using multiplexed diode lasers for rapid temperature measurements in gaseous flows[J]. Applied Physics B, 2004, 78(3/4): 503-511.

【51】Qu D S, Wang G Y, Pan H, et al. Wavelength-modulation spectroscopy for measurements of gas pressure, temperature and H2O concentration in high-temperature environment[J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1339-1344.
屈东胜, 王广宇, 潘虎, 等. 利用波长调制光谱技术测量高温环境中的气体压强、温度和H2O组分浓度[J]. 光谱学与光谱分析, 2017, 37(5): 1339-1344.

【52】Qu S M, Wang M, Li N, et al. Mid-infrared trace CH4 detector based on TDLAS-WMS[J]. Spectroscopy and Spectral Analysis, 2016, 36(10): 3174-3178.
曲世敏, 王明, 李楠, 等. 基于TDLAS-WMS的中红外痕量CH4检测仪[J]. 光谱学与光谱分析, 2016, 36(10): 3174-3178.

【53】Wei M, Liu J G, Kan R F, et al. Open-path detection of atmospheric CH4 and N2O based on quantum cascade laser[C]∥Optical Instrumentation for Energy and Environmental Applications 2014, Canberra, Australia, 2014. Eth3A.3

【54】He J F, Kan R F, Xu Z Y, et al. Derivative spectrum and concentration inversion algorithm of tunable diode laser absorption spectroscopy oxygen measurement[J]. Acta Optica Sinica, 2014, 34(4): 0430003.
何俊峰, 阚瑞峰, 许振宇, 等. 可调谐二极管激光吸收光谱氧气测量中的导数光谱处理与浓度反演算法研究[J]. 光学学报, 2014, 34(4): 0430003.

【55】Wei M, Liu J G, Kan R F, et al. Study on detection of greenhouse gases based on quantum cascade laser[J]. Acta Optica Sinica, 2014, 34(12): 1230003.
魏敏, 刘建国, 阚瑞峰, 等. 基于量子级联激光器的温室气体测量方法研究[J]. 光学学报, 2014, 34(12): 1230003.

【56】Goldenstein C S, Strand C L, Schultz I A, et al. Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes[J]. Applied Optics, 2014, 53(3): 356-367.

【57】Qu Z C, Ghorbani R, Valiev D, et al. Calibration-free scanned wavelength modulation spectroscopy: application to H2O and temperature sensing in flames[J]. Optics Express, 2015, 23(12): 16492.

【58】Sun K, Chao X, Sur R, et al. Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers[J]. Measurement Science and Technology, 2013, 24(12): 125203.

【59】Wei M, Kan R F, Chen B, et al. Calibration-free wavelength modulation spectroscopy for gas concentration measurements using a quantum cascade laser[J]. Applied Physics B, 2017, 123(5):149.

【60】Krishna Y, O′Byrne S. Tunable diode laser absorption spectroscopy as a flow diagnostic tool: a review[J]. Journal of the Indian Institute of Science, 2016, 96(1): 17-28.

【61】Rieker G B, Jeffries J B, Hanson R K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments[J]. Applied Optics, 2009, 48(29): 5546-5560.

【62】Yao L, Yao D L, Yi J H, et al. Measurement Method of Plume Velocity for Solid Propellant Charge Based on TDLAS[J]. Chinese Journal of Explosives & Propellants, 2016, 39(5): 35-39.
姚路, 姚德龙, 仪建华, 等. 基于TDLAS的固体推进剂装药羽流流速测量方法[J]. 火炸药学报, 2016, 39(5): 35-39.

【63】Zhang L, Liu J G, Kan R F, et al. High velocity airflow measurement method based on tunable semiconductor laser absorption spectroscopy[J]. Acta Physica Sinica, 2012, 61(3): 034214.
张亮, 刘建国, 阚瑞峰, 等. 基于可调谐半导体激光吸收光谱技术的高速气流流速测量方法研究[J]. 物理学报, 2012, 61(3): 034214.

【64】Liu X, Hanson R K. A line-of sight absorption of H2O vapor gas temperature sensing in uniform and nonuniform flows[D]. Palo Alto: Stanford University, 2006.

【65】Hanson R K. Advances in tunable diode laser absorption spectroscopy (TDLAS) for measurements of gas properties in combustion systems[C]∥CLEO: Science and Innovations. Optical Society of America, 2015: STh4O. 1.

【66】Lyle K H, Jeffries J B, Hanson R K, et al. Diode-laser sensor for air-mass flux 2: nonuniform flow modeling and seroengine tests[J]. AIAA Journal, 2007, 45(9): 2213-2223.

【67】Ma L, Li X S, Sanders S T, et al. 50-kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography[J]. Optics Express, 2013, 21(1): 1152-1162.

【68】Yang B, He G Q , Liu P J, et al. TDLAS-based measurements of parameters for incoming flow hot-firing test of air-breathing rocket engine[J]. Chinese Jounal of Lasers, 2011, 38(5): 0508006.
杨斌, 何国强, 刘佩进, 等. 利用TDLAS技术开展吸气式发动机来流热试实验参数测量[J]. 中国激光, 2011, 38(5): 0508006.

【69】Song J L, Hong Y J, Wang G Y, et al. Measurement of supersonic flow parameters using laser absorption spectroscopy[J]. Infrared and Laser Engineering, 2014, 43(11): 3510-3515.
宋俊玲, 洪延姬, 王广宇, 等. 基于激光吸收光谱技术的超声速气流参数测量[J]. 红外与激光工程, 2014, 43(11): 3510-3515.

【70】Qu D S, Hong Y J, Wang G Y, et al. Measurement method for gas parameters in combustion flow based on spectroscopy fitting[J]. Acta Optica Sinica, 2017, 37(12): 1230001.
屈东胜, 洪延姬, 王广宇, 等. 基于光谱拟合的燃烧场气体参数测量方法研究[J]. 光学学报, 2017, 37(12): 1230001.

【71】Liu C, Xu L, Chen J, et al. Development of a fan-beam TDLAS-based tomographic sensor for rapid imaging of temperature and gas concentration[J]. Optics Express, 2015, 23(17): 22494-22511.

【72】Chen D, Liu W Q, Zhang Y J, et al. Successive measurement of atmospheric ammonia in urban area of Beiiing using open-path TDLAS system[J]. Optical technique, 2007, 33(2): 311-314.
陈东, 刘文清, 张玉钧, 等. 开放光程TDLAS系统对北京城区NH3浓度的连续检测[J]. 光学技术, 2007, 33(2): 311-314.

【73】Kan R F, Liu W Q, Zhang Y J, et al. High sensitive laser absorption spectrometer using in greenhouse gas monitoring[C]∥The 17th Laser Conference Proceedings, Mianyang, Sichuan, 2005.
阚瑞峰, 刘文清, 张玉钧, 等. 高灵敏激光光谱温室气体监测仪性能测试[C]∥第十七届激光学术会议论文集, 四川, 绵阳, 2005.

【74】Shu X W, Zhang Y J, Kan R F, et al. An investigation of temperature compensation of hcl gas online monitoring based on TDLAS method[J]. Spectroscopy and Spectrai Analysis, 2010, 30(5): 1352-1356.
束小文, 张玉钧, 阚瑞峰, 等. 基于TDLAS技术的HCl气体在线探测温度补偿方法研究[J]. 光谱学与光谱分析, 2010, 30(5): 1352-1356.

【75】Yao L, Liu W Q, Liu J G, et al. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J]. Chinese Journal of Lasers, 2015, 42(2): 0215003.
姚路, 刘文清, 刘建国, 等. 基于TDLAS的长光程环境大气痕量CO监测方法研究[J]. 中国激光, 2015, 42(2): 0215003.

【76】Xu Z Y, Kan R F, Ruan J, et al. A tunable diode laser absorption based velocity sensor for local field in hypersonic flows[C]∥Optics and Photonics for Energy and the Environment, 2016.

【77】Chen J Y, Liu J G, He Y B, et al. Study of CO2 spectroscopic parameters at high temperature near 2.0 μm[J]. Acta Physica Sinica, 2013, 62(22): 224206.
陈玖英, 刘建国, 何亚柏, 等. 2.0μm处CO2高温谱线参数测量研究[J]. 物理学报, 2013, 62(22): 224206.

【78】Nie W, Kan R F, Xu Z Y, et al. Measurements of line strengths for some lines of ammonia in 6611-6618 cm-1[J]. Acta Physica Sinica, 2017, 66(5): 054207.
聂伟, 阚瑞峰, 许振宇, 等. 6611-6618 cm-1之间氨气光谱线强的测量[J]. 物理学报, 2017, 66(5): 054207.

【79】Nie W, Kan R F, Xu Z Y, et al. Measuring spectral parameters of water vapor at low temperature based on tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2017, 66(20): 204204.
聂伟, 阚瑞峰, 许振宇, 等. 基于TDLAS技术的水汽低温吸收光谱参数测量[J]. 物理学报, 2017, 66(20): 204204.

【80】Xu Z Y, Liu W Q, Liu J G, et al. Temperature measurements based on tunable diode laser absorption specctroscopy[J]. Acta Physica Sinica, 2012, 61(23): 234204.
许振宇, 刘文清, 刘建国, 等. 基于可调谐半导体激光器吸收光谱的温度测量方法研究[J]. 物理学报, 2012, 61(23): 234204.

【81】Dai B, Ruan J, Xu Z Y, et al. Measurement of combustor exit temperature field based on tunable diode laser absorption spectroscopy technology[J]. Gas Turbine Experiment and Research, 2015, 28(4): 49-56.
戴斌, 阮俊, 许振宇, 等. 基于TDLAS技术的燃烧室出口温度场测量[J]. 燃气涡轮试验与研究, 2015, 28(4): 49-56.

【82】Martin E, Goyne C, Diskin G. Analysis of a tomography technique for a scramjet wind tunnel[J]. International Journal of Hypersonics, 2010, 1(3): 173-180.

【83】Villarreal R, Varghese P L. Frequency-resolved absorption tomography with tunable diode lasers[J]. Applied Optics, 2005, 44(31): 6786.

【84】Xia H H, Kan R F, Xu Z Y, et al. Two-step tomographic reconstructions of temperature and species concentration in a flame based on laser absorption measurements with a rotation platform[J]. Optics and Lasers in Engineering, 2017, 90: 10-18.

【85】Xia H H, Kan R F, Liu J G, et al. Analysis of algebraic reconstruction technique for accurate imaging of gas temperature and concentration based on tunable diode laser absorption spectroscopy[J]. Chinese Physics B, 2016, 25(6): 064205.

【86】Bryner E, Diskin G S, Goyne C P, et al. Developement of an infrared laser absorption tomography system for a sramjet combustor[C]∥25th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, San Francisco, California, 2006. AIAA 2006-3445.

【87】Llacer J, Meng J D. Matrix-based image reconstruction methods for tomography[C]∥Nuclear Science Symposium, Orlando, FL, USA, 31 Oct. 1984.

【88】Ma L, Cai W W, Caswell A W, et al. Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy[J]. Optics Express, 2009, 17(10): 8602-8613.

【89】Peng D, Jin Y, Zhai C. Reconstruction algorithms for 2D temperature field based on TDLAS[J]. Chinese Journal of Lasers, 2016, 43(11): 1111002.
彭冬, 金熠, 翟超. 基于TDLAS的二维温度场重建算法[J]. 中国激光, 2016, 43(11): 1111002.

【90】Zhang G L, Liu J G, Xu Z Y, et al. Characterization of temperature non-uniformity over a premixed CH4-air flame based on line-of-sight TDLAS[J]. Applied Physics B, 2016, 122(1): 3.

【91】Sun K, Chao X, Sur R, et al. Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing[J]. Applied Physics B, 2013, 110(4): 497-508.

【92】Sun K, Sur R, Jeffries J B, et al. Application of wavelength-scanned wavelength-modulation spectroscopy H2O absorption measurements in an engineering-scale high-pressure coal gasifier[J]. Applied Physics B, 2014, 117(1): 411-421.

【93】An X L, Kraetschmer T, Takami K, et al. Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments[J]. Applied Optics, 2011, 50(4): A29-A37.

【94】Kaminski C F. A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers[J]. Applied Physics Letters, 2014, 104(3): 034101.

【95】Dong L, Tittel F K, Li C, et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing[J]. Optics Express, 2016, 24(6): A528-A535.

【96】Li C, Dong L, Zheng C, et al. Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser[J]. Sensors and Actuators B: Chemical, 2016, 232: 188-194.

【97】Spearrin R M, Goldenstein C S, Schultz I A, et al. Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy[J]. Applied Physics B, 2014, 117(2): 689-698.

【98】Sappey A, McCormick P, Masterson P, et al. Development of a flight-worthy TDLAS-based oxygen sensor for HIFiRE-1[C]. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, Colorado, 2009. AIAA 2009-4971.


Kan Ruifeng,Xia Huihui,Xu Zhenyu,Yao Lu,Ruan Jun,Fan Xueli. Research and Progress of Flow Field Diagnosis Based on Laser Absorption Spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 0911005

阚瑞峰,夏晖晖,许振宇,姚路,阮俊,范雪丽. 激光吸收光谱流场诊断技术应用研究与进展[J]. 中国激光, 2018, 45(9): 0911005


【1】刘紫怀,阳春华,罗旗舞,朱高峰. 基于多次谐波联合分析的气体浓度反演方法. 光学学报, 2019, 39(10): 1030001--1

【2】臧益鹏,许振宇,夏晖晖,黄安,何亚柏,阚瑞峰. 基于免标定波长调制技术的高温谱线参数测量方法. 中国激光, 2020, 47(10): 1011001--1

【3】张步强,许振宇,刘建国,夏晖晖,聂伟,袁峰,阚瑞峰. 燃烧流场波长调制光谱吸收模型的研究. 中国激光, 2019, 46(7): 711001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF