首页 > 论文 > 光学 精密工程 > 26卷 > 7期(pp:1680-1690)

叠堆式超磁致伸缩致动器的模型预测滑模控制

Model predictive sliding mode control for stack giant magnetostrictive actuators

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

根据新型电液伺服阀的驱动要求, 设计了叠堆式超磁致伸缩致动器(SGMA), 为补偿其固有的非线性, 提高位移输出精度, 研究了SGMA的控制策略, 并对控制策略进行了仿真和实验验证。首先, 采用永磁体和GMM棒交替排布的结构形式设计了SGMA, 有助于提高偏置磁场的均匀性; 然后, 根据SGMA的结构特点, 将其视为多自由度振动系统, 建立了系统的位移输出模型; 接着, 在输出模型的基础上, 结合模型预测控制与滑模控制策略, 设计了模型预测滑模控制器; 最后, 进行了控制策略仿真和实验验证。实验结果表明, 模型预测滑模控制器能够实现SGMA的精密控制。在阶跃控制实验中, 系统稳定时间低于1.5 ms, 无超调和稳态误差; 在正弦控制实验中, 系统最大控制误差约为0.83 μm, 相对值约为6.9%, 证明了控制策略的有效性。

Abstract

According to the requirements of actuators for novel electro-hydraulic servo valves (EHSVs), this paper proposes a design for a special stack giant magnetostrictive actuator (SGMA). In order to compensate for the nonlinear property of the SGMA, a controlling strategy was proposed and verified by simulation and experimentation. First, with permanent magnets (PMs) and short giant magnetostrictive material (GMM) rods located iteratively, a highly uniform bias magnetic field was obtained in the SGMA. Then, based on the structure of the SGMA, a multi-DOF model was established to describe the dynamic properties of this actuator. In addition, a control methodology was developed, which combines model predictive control and sliding mode control. Finally, to validate the proposed controller, both simulation and experimentation are conducted, and the results indicate that the proposed controller can realize the ultra-precise control of the SGMA. In the step control experiment, the system achieves stability within 1.5 ms with no overshoot or steady-state error. In the sinusoidal control experiment, the maximum tracking error of the system is approximately 0.83 μm, 6.9% of the total output of the SGMA, proving that the model predictive sliding mode control can significantly reduce the nonlinearity of the SGMA.

中国激光微信矩阵
补充资料

中图分类号:TP273

DOI:10.3788/ope.20182607.1680

所属栏目:微纳技术与精密机械

基金项目:国家自然科学基金资助项目(No.51275525)

收稿日期:2017-11-14

修改稿日期:2018-01-09

网络出版日期:--

作者单位    点击查看

何忠波:军械工程学院 车辆与电气工程系, 河北 石家庄 050003
荣 策:军械工程学院 车辆与电气工程系, 河北 石家庄 050003
周景涛:军械工程学院 车辆与电气工程系, 河北 石家庄 050003
薛光明:军械工程学院 车辆与电气工程系, 河北 石家庄 050003
郑佳伟:军械工程学院 车辆与电气工程系, 河北 石家庄 050003

联系人作者:何忠波(hzb_hcl_xq@sina.com)

备注:何忠波(1968-), 男, 吉林长春人, 教授, 博士生导师, 1991年于军械工程学院获得学士学位, 2004年于北京理工大学获得博士学位, 主要从事智能材料及应用方面的研究。

【1】贾振元, 郭东明. 超磁致伸缩微位移执行器原理与应用[M]. 北京: 科学出版社, 2008.
JIA ZH Y, GUO D M.Theory and Application of Giant Magnetostrictive Microdisplacement Actuator[M]. Beijing: Science Press, 2008. (in Chinese)

【2】薛光明, 张培林, 何忠波, 等. 强偏置超磁致伸缩致动器准静态位移建模与实验[J]. 农业机械学报, 2015, 46(7): 318-324.
XUE G M, ZHANG P L, HE ZH B, et al.. Modeling and experiment of strong bias giant magnetostrictive actuators semi-static displacement[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 318-324.(in Chinese)

【3】朱玉川, 李跃松. 射流伺服阀用放大型超磁致伸缩执行器建模及分析[J]. 航空学报, 2014, 35(11): 3156-3165.
ZHU Y CH, LI Y S. Modeling and analysis for amplified giant magnetostrictive actuator applied to jet-pipe electro-hydraulic servovalve[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 3156-3165.(in Chinese)

【4】YANG ZH SH, HE ZH B, LI D W, et al... Dynamic analysis and application of a novel hydraulic displacement amplifier based on flexible pistons for micro stage actuator[J]. Sensors and Actuators A: Physical, 2015, 236: 228-246.

【5】KARUNANIDHI S, SINGAPERUMAL M. Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve[J]. Sensors and Actuators A: Physical, 2010, 157(2): 185-197.

【6】李莹, 袁惠群, 梁明轩. 超磁致伸缩微致动器车削加工系统模糊自适应精密位移控制[J]. 控制理论与应用, 2014, 31(2): 256-262.
LI Y, YUN H Q, LIANG M X. Chaotic adaptive precision-displacement control for giant magnetostrictive actuator cutting systems[J]. Control Theory & Applications, 2014, 31(2): 256-262.(in Chinese)

【7】LIU X L, WU Y J, ZHANG Y ZH, et al.. Inverse model-based iterative learning control on hysteresis in giant magnetostrictive actuator[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(10): 1233-1242.

【8】LI Y S, ZHU Y CH, WU H T, et al.. Modeling and inverse compensation for giant magnetostrictive transducer applied in smart material electrohydrostatic actuator[J]. Journal of Intelligent Material Systems and Structures, 2013, 25(3): 378-388.

【9】翟鹏, 肖博涵, 贺凯, 等. 超磁致伸缩致动器的复合反馈控制及其在变椭圆销孔精密加工中的应用[J]. 光学 精密工程, 2016, 24(6): 1389-1398.
ZHAI P, XIAO B H, HE K, et al.. Composite backward control for GMA and its application in high precision maching of variable ellipse pinhole[J]. Opt. Precision Eng., 2016, 24(6): 1389-1398.(in Chinese)

【10】孟爱华, 刘成龙, 陈文艺, 等. 超磁致伸缩致动器的小脑神经网络前馈逆补偿-模糊PID控制[J]. 光学 精密工程, 2015, 23(3): 753-759.
MENG A H, LIU CH L, CHEN W Y, et al.. CMAC feed forward inverse compensation-fuzzy PID control for giant magnetostrictive actuator[J]. Opt. Precision Eng., 2015, 23(3): 753-759.(in Chinese)

【11】杨斌堂, 徐彭有, 孟光, 等. 大行程精密定位超磁致伸缩驱动器的设计与控制[J]. 机械工程学报, 2012, 48(1): 25-31.
YANG B T, XU P Y, MENG G, et al.. Design and control of giant magnetostrictive actuator for long-stroke precision positioning[J]. Journal of Mechanical Engineeering, 2012, 48(1): 25-31.(in Chinese)

【12】CHENG L, LIU W CH, HOU Z G, et al.. Neural network based nonlinear model predictive control for piezoelectric actuators[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7717-7727.

【13】LIU W CH, CHENG L, HOU Z G, et al.. An inversion-free model predictive control with error compensation for piezoelectric actuators[C]. American Control Conference, Chicago, 2015.

【14】OATES W, SMITH R. Optimal tracking using magnetostrictive actuators operating in nonlinear and hysteretic regimes[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 2009, 131(3): 031001.

【15】VENKATARAMAN R. Modeling and Adaptive Control of Magnetostrictive Actuators[D]. City of College Park: University of Maryland, 1999.

【16】SHU L, DAPINO M, WU G, et al.. Frequency-dependent sliding-mode control of Galfenol-driven unimorph actuator based on finite-element model[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1071-1082.

【17】杨朝舒, 何忠波, 李冬伟, 等. 强干扰条件下超磁致伸缩致动器的模糊滑模动态控制[J]. 机械科学与技术, 2015, 34(7): 1063-1067.
YANG ZH SH, HE ZH B, LI D W, et al.. Fuzzy sliding mode control of giant magnetostrictive actuator under strong pertubation[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(7): 1063-1067.(in Chinese)

【18】张雷, 邬义杰, 王彬, 等. 超磁致伸缩构件精密加工异型孔滑膜控制[J]. 浙江大学学报: 工学版, 2012, 46(8): 1412-1418.
ZHANG L, WU Y J, WANG B, et al.. Non-cylinder holes precision machining by giant magnetostrictive components with sliding mode control[J]. Journal of Zhejiang University: Engineering Science, 2012, 46(8): 1412-1418.(in Chinese)

【19】刘金琨. 滑模变结构控制MATLAB仿真[M]. 北京: 清华大学出版社, 2012.
LIU J K. Sliding Mode Control Design and MATLAB Simulation[M].Beijing: Tsinghua University Press, 2012. (in Chinese)

【20】YANG ZH SH, HE ZH B, LI D W, et al.. Bias magnetic field of stack giant magnetostrictive actuator: design, analysis and optimization[J]. Advances in Materials Science and Engineering, 2016, 2016: 1-13.

【21】何忠波, 荣策, 李冬伟, 等. 叠堆式超磁致伸缩致动器磁场分布建模及分析[J]. 光学 精密工程, 2017, 25(9): 2347-2358.
HE ZH B, RONG C, LI D W, et al.. Magnetic field distribution modeling and analysis of stack giant magnetostrictive actuator[J]. Opt. Precision Eng., 2017, 25(9): 2347-2358. (in Chinese)

引用该论文

HE Zhong-bo,RONG Ce,ZHOU Jing-tao,XUE Guang-ming,ZHENG Jia-wei. Model predictive sliding mode control for stack giant magnetostrictive actuators[J]. Optics and Precision Engineering, 2018, 26(7): 1680-1690

何忠波,荣 策,周景涛,薛光明,郑佳伟. 叠堆式超磁致伸缩致动器的模型预测滑模控制[J]. 光学 精密工程, 2018, 26(7): 1680-1690

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF