首页 > 论文 > 光电工程 > 45卷 > 9期(pp:180151--1)

空芯光子带隙光纤及其传感技术

Hollow-core photonic bandgap fibers: properties and sensing technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

本文综述了空芯光子带隙光纤的独特性质,并介绍了近年来这类光纤在传感领域应用的新进展。光波在空气纤芯中低损耗传输是空芯光子带隙光纤的重要特性,它带来了长距离、大能量密度的光与物质相互作用通道,降低了光纤材料属性对传输光的影响(如中红外吸收、热光效应),为诸如痕量气体/液体探测、高精度光纤陀螺仪等传感应用提供了高效的新平台。空芯光子带隙光纤内部精细的微结构具有新颖的机械性能和热性能,有利于诸如声波、振动探测等传感应用;还可结合光纤后期热处理、选择性填充等技术,对多孔包层进行结构修改或材料填充,获得进一步的性能和功能扩展。这些灵活性已用于开发具有新特性的光纤器件,例如光栅、起偏器和偏振干涉仪。目前,空芯光子带隙光纤传感技术的发展已大大扩展了光纤的环境感知能力和应用范围,是全光器件和光集成技术发展的重要方向。

Abstract

In this paper, the unique properties of the hollow-core photonic bandgap fiber (HC-PBF) are reviewed, and a variety of sensing and device applications of this type of fiber in recent years are introduced. Low-loss light transmission in air core is an important characteristic of the HC-PBF, which provides light-matter interaction channel with high energy density and long interaction distance. In addition, the air-propagation of the light in fiber also reduces the impacts of fiber material properties (such as infrared absorption, thermos-optical effect) on propagating light, hence offers an efficient platform for the sensing applications such as trace gas / liquid detection, optical fiber gyro sensing. The fine micro-structure in HC-PBF exhibits novel mechanical and thermal properties, which would be beneficial to the sensing applications such as sound wave and vibration detection. The HC-PBF’s porous structure can also be locally modified by using various post-processing techniques, such as local heat treatment, micromachining and selective filling, which would enable further function extension or performance enhancement. The flexibility of the fiber has been used to develop new optical fiber devices, such as grating, polarizer and polarization interferometer. At present, the development of HC-PBF sensing technology has greatly expanded the sensing ability and application range of optical fiber. It is an important direction for the development of all-optical devices and optical integration technology.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436.3;TN253

DOI:10.12086/oee.2018.180151

所属栏目:综述

基金项目:国家自然科学基金资助项目(61535004);CAST-BISEE 创新基金资助项目(CAST-BISEE2017-015);中央高校基本科研业务费资助

收稿日期:2018-02-09

修改稿日期:2018-05-10

网络出版日期:--

作者单位    点击查看

汪 超:武汉大学电气工程学院,湖北 武汉 430072香港理工大学电机工程学系,香港 999077
黄贺勇:武汉大学电气工程学院,湖北 武汉 430072
孟冬辉:北京卫星环境工程研究所,北京 100094
张景川:北京卫星环境工程研究所,北京 100094
何海律:香港理工大学电机工程学系,香港 999077
靳 伟:香港理工大学电机工程学系,香港 999077

联系人作者:汪超(eecwang@whu.edu.cn)

备注:汪超(1981-),男,博士,副教授,主要从事光纤及其传感技术的研究

【1】Russell P. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358–362.

【2】Poletti F, Wheeler N V, Petrovich M N, et al. Towards high-capacity fibre-optic communications at the speed of light in vacuum[J]. Nature Photonics, 2013, 7(4): 279–284.

【3】Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537–1539.

【4】Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: technology and applications[J]. Nanophotonics, 2013, 2(5–6): 315–340.

【5】Poletti F. Hollow core fiber with an octave spanning bandgap[J]. Optics Letters, 2010, 35(17): 2837–2839.

【6】Hollow-core photonic bandgap fiber (model HC-1550) datasheet from website of NKT Photonics Corporation[OL]. https://www.nktphotonics.com/lasers-fibers/product/hollow-core -photonic-crystal-fibers/.

【7】Roberts P J, Couny F, Sabert H, et al. Ultimate low loss of hollow-core photonic crystal fibres[J]. Optics Express, 2005, 13(1): 236–244.

【8】Petrovich M N, Poletti F, Van Brakel A, et al. Robustly single mode hollow core photonic bandgap fiber[J]. Optics Express, 2008, 16(6): 4337–4346.

【9】Digonnet M J F, Kim H K, Kino G S, et al. Understanding air-core photonic-bandgap fibers: analogy to conventional fibers[ J]. Journal of Lightwave Technology, 2006, 23(12): 4169–4177.

【10】Fini J M, Nicholson J W, Mangan B, et al. Polarization maintaining single-mode low-loss hollow-core fibres[J]. Nature Communications, 2014, 5: 5085.

【11】Kim H K, Shin J, Fan S H, et al. Designing air-core photonic- bandgap fibers free of surface modes[J]. IEEE Journal of Quantum Electronics, 2004, 40(5): 551–556.

【12】West J A, Smith C M, Borrelli N F, et al. Surface modes in air-core photonic band-gap fibers[J]. Optics Express, 2004, 12(8): 1485–1496.

【13】Yang F, Jin W, Cao Y C, et al. Towards high sensitivity gas detection with hollow-core photonic bandgap fibers[J]. Optics Express, 2014, 22(20): 24894–24907.

【14】Fini J M, Nicholson J W, Windeler R S, et al. Low-loss hollow- core fibers with improved single-modedness[J]. Optics Express, 2013, 21(5): 6233–6242.

【15】Wegmuller M, Legré M, Gisin N, et al. Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm[J]. Optics Express, 2005, 13(5): 1457–1467.

【16】Poletti F, Broderick N G R, Richardson D J, et al. The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers[J]. Optics Express, 2005, 13(22): 9115–9124.

【17】Bouwmans G, Luan F, Knight J C, et al. Properties of a hollow- core photonic bandgap fiber at 850 nm wavelength[J]. Optics Express, 2003, 11(14): 1613–1620.

【18】Wen H, Terrel M A, Kim H K, Digonnet M J F, Fan S, Measurements of the Birefringence and Verdet Constant in an Air-Core Fiber[J]. Journal of Lightwave Technology, 2009, 27(15): 3194–3101.

【19】Alam M S, Saitoh K, Koshiba M. High group birefringence in air-core photonic bandgap fibers[J]. Optics Letters, 2005, 30(8): 824–826.

【20】Roberts P J, Williams D P, Sabert H, et al. Design of low-loss and highly birefringent hollow-core photonic crystal fiber[J]. Optics Express, 2006, 14(16): 7329–7341.

【21】Hansen T P, Broeng J, Jakobsen C, et al. Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling[J]. Journal of Lightwave Technology, 2004, 22(1): 11–15.

【22】Wheeler N V, Heidt A M, Baddela N K, et al. Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow- core–photonic-bandgap fiber[J]. Optics Letters, 2014, 39(2): 295–298.

【23】Slavík R, Marra G, Fokoua E N, et al. Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres[ J]. Scientific Reports, 2015, 5: 15447.

【24】Dangui V, Kim H K, Digonnet M J F, et al. Phase sensitivity to temperature of the fundamental mode in air-guiding photonic- bandgap fibers[J]. Optics Express, 2005, 13(18): 6669–6684.

【25】Jones D C, Bennett C R, Smith M A, et al. High-power beam transport through a hollow-core photonic bandgap fiber[J]. Optics Letters, 2014, 39(11): 3122–3125.

【26】Jin W, Cao Y C, Yang F, et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 2015, 6: 6767.

【27】Hoo Y L, Jin W, Ho H L, et al. Gas diffusion measurement using hollow-core photonic bandgap fiber[J]. Sensors and Actuators B: Chemical, 2005, 105(2): 183–186.

【28】Ritari T, Tuominen J, Ludvigsen H, et al. Gas sensing using air-guiding photonic bandgap fibers[J]. Optics Express, 2004, 12(17): 4080–4087.

【29】Magalhaes F, Carvalho J P, Ferreira L A, et al. Methane detection system based on wavelength modulation spectroscopy and hollow-core fibres[C]//Proceedings of 2008 IEEE SENSORS, 2008: 1277–1280.

【30】Parry J P, Griffiths B C, Gayraud N, et al. Towards practical gas sensing with micro-structured fibres[J]. Measurement Science and Technology, 2009, 20(7): 075301.

【31】Wynne R M, Barabadi B, Creedon K J, et al. Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor[ J]. Journal of Lightwave Technology, 2009, 27(11): 1590–1596.

【32】Nwaboh J A, Hald J, Lyngs? J K, et al. Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm[J]. Applied Physics B, 2013, 110(2): 187–194.

【33】Benabid F, Couny F, Knight J C, et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres[ J]. Nature, 2005, 434(7032): 488–491.

【34】Xiao L M, Demokan M S, Jin W, et al. Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect[J]. Journal of Lightwave Technology, 2007, 25(11): 3563–3574.

【35】Benabid F. Photonic microcells[C]//Proceedings of Advanced Photonics Congress, 2012.

【36】Hoo Y L, Liu S J, Ho H L, et al. Fast response microstructured optical fiber methane sensor with multiple side-openings[J]. IEEE Photonics Technology Letters, 2010, 22(5): 296–298.

【37】Lehmann H, Brueckner S, Kobelke J, et al. Toward photonic crystal fiber based distributed chemosensors[J]. Proceedings of the SPIE, 2005, 5855: 419–422.

【38】Li X F, Liang J X, Oigawa H, et al. Doubled optical path length for photonic bandgap fiber gas cell using micromirror[J]. Japanese Journal of Applied Physics, 2011, 50(6): 06GM01.

【39】van Brakel A, Grivas C, Petrovich M N, et al. Micro-channels machined in microstructured optical fibers by femtosecond laser[ J]. Optics Express, 2007, 15(14): 8731–8736.

【40】Yang F, Jin W, Lin Y C, et al. Hollow-core microstructured optical fiber gas sensors[J]. Journal of Lightwave Technology, 2017, 35(16): 3413–3424.

【41】Lin Y C, Wei J, Yang F, et al. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre[ J]. Scientific Reports, 2016, 6: 39410.

【42】Tan Y Z, Jin W, Yang F, et al. Hollow-core fiber-based high finesse resonating cavity for high sensitivity gas detection[J]. Journal of Lightwave Technology, 2017, 35(14): 2887–2893.

【43】Yang F, Jin W. All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550 nm hollow-core fiber[ C]//Proceedings of 25th Optical Fiber Sensors Conference (OFS), 2017: 4.

【44】Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601–8639.

【45】Jin W, Ho H L, Cao Y C, et al. Gas detection with micro- and nano-engineered optical fibers[J]. Optical Fiber Technology, 2013, 19(6): 741–759.

【46】Lin Y C, Liu F, He X G, et al. Distributed gas sensing with optical fibre photothermal interferometry[J]. Optics Express, 2017, 25(25): 31568–31585.

【47】Xiao L M, Jin W, Demokan M S, et al. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer[J]. Optics Express, 2005, 13(22): 9014–9022.

【48】Cordeiro C M B, dos Santos E M, Cruz C H B, et al. Lateral access to the holes of photonic crystal fibers–selective filling and sensing applications[J]. Optics Express, 2006, 14(18): 8403–8412.

【49】Huang Y Y, Xu Y, Yariv A. Fabrication of functional microstructured optical fibers through a selective-filling technique[J]. Applied Physics Letters, 2004, 85(22): 5182–5184.

【50】Bozolan A, Gerosa R M, de Matos C J S, et al. Temperature sensing using colloidal-core photonic crystal fiber[J]. IEEE Sensors Journal, 2012, 12(1): 195–200.

【51】Du F, Lu Y Q, Wu S T. Electrically tunable liquid-crystal photonic crystal fiber[J]. Applied Physics Letters, 2004, 85(12): 2181–2183.

【52】Yan D, Popp J, Pletz M W, et al. Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers[J]. ACS Photonics, 2017, 4(1): 138–145.

【53】Xuan H F, Jin W, Ju W, et al. Low-contrast photonic bandgap fibers and their potential applications in liquid-base sensors[J]. Proceedings of SPIE, 2007, 6619: 661936.

【54】de Matos C J S, Cordeiro C M B, dos Santos E M, et al. Liquid- core, liquid-cladding photonic crystal fibers[J]. Optics Express, 2007, 15(18): 11207–11212.

【55】Wang Y P, Tan X L, Jin W, et al. Improved bending property of half-filled photonic crystal fiber[J]. Optics Express, 2010, 18(12): 12197–12202.

【56】Pang M, Xuan H F, Ju J, et al. Influence of strain and pressure to the effective refractive index of the fundamental mode of hollow-core photonic bandgap fibers[J]. Optics Express, 2010, 18(13): 14041–14055.

【57】Pang M, Jin W. Detection of acoustic pressure with hollow-core photonic bandgap fiber[J]. Optics Express, 2009, 17(13): 11088–11097.

【58】Yang F, Jin W, Ho H L, et al. Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers[J]. Optics Express, 2013, 21(13): 15514–15521.

【59】Wang Y P, Jin W, Ju J, et al. Long period gratings in air-core photonic bandgap fibers[J]. Optics Express, 2008, 16(4): 2784–2790.

【60】Iadicicco A, Ranjan R, Campopiano S. Fabrication and characterization of long-period gratings in hollow core fibers by electric arc discharge[J]. IEEE Sensors Journal, 2015, 15(5): 3014–3020.

【61】Xuan H F, Jin W, Ju J, et al. Hollow-core photonic bandgap fiber polarizer[J]. Optics Letters, 2008, 33(8): 845–847.

【62】Xuan H F, Jin W, Zhang M, et al. In-fiber polarimeters based on hollow-core photonic bandgap fibers[J]. Optics Express, 2009, 17(15): 13246–13254.

【63】Bykov D S, Schmidt O A, Euser T G, et al. Flying particle sensors in hollow-core photonic crystal fibre[J]. Nature Photonics, 2015, 9: 461–465.

【64】Digonnet M, Blin S, Kim H K, et al. Sensitivity and stability of an air-core fiber-optic gyroscope[J]. Measurement Science & Technology, 2007, 18(10): 3089–3097.

【65】Ying D, Demokan M S, Zhang X, et al. Analysis of Kerr effect in resonator fiber optic gyros with triangular wave phase modulation[ J]. Applied Optics, 2010, 49(3): 529–535.

引用该论文

Wang Chao,Huang Heyong,Meng Donghui,Zhang Jingchuan,Ho Hoi Lut,Jin Wei. Hollow-core photonic bandgap fibers: properties and sensing technology[J]. Opto-Electronic Engineering, 2018, 45(9): 180151

汪 超,黄贺勇,孟冬辉,张景川,何海律,靳 伟. 空芯光子带隙光纤及其传感技术[J]. 光电工程, 2018, 45(9): 180151

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF