中国激光, 2018, 45 (10): 1001004, 网络出版: 2018-10-12   

784.9 nm和808 nm激光二极管抽运Tm/Ho键合激光器 下载: 775次

784.9 nm and 808 nm Laser Diode Pumped Tm/Ho Bonded Laser
作者单位
1 中国科学院福建物质结构研究所光电材料化学与物理重点实验室, 福建 福州 350002
2 中国科学院大学, 北京100049
摘要
研究了室温下784.9 nm和808 nm的激光二极管(LD)抽运Tm/Ho键合激光器, 增益介质是由Tm∶YAG和Ho∶YAG晶体扩散键合而成的Tm/Ho∶YAG键合晶体; 对两种LD抽运源下的Ho激光性能, 包括输出功率、光束质量、输出波长进行对比。低抽运吸收功率下, 采用808 nm LD抽运的激光器效率稍低于784.9 nm LD, 验证了基于Tm/Ho键合增益介质这一新型激光实现机制在抽运波长选择上的宽可适用性。在784.9 nm的抽运波长下, 实现了室温下最高1.89 W的激光输出, 光-光转换效率为26.4%, 斜率效率为40.78%; 在常规808 nm LD的抽运下, 实现了室温下最高1.74 W的激光输出, 光-光转换效率为24.4%, 斜率效率为40.31%。两种抽运条件下, 最高输出功率所对应的激光波长均在2122 nm附近。
Abstract
784.9 nm and 808 nm laser diode (LD) pump Tm/Ho bonded laser is studied at room temperature. The gain medium is a Tm/Ho∶YAG bonded crystal formed by diffusion-bonding of Tm∶YAG and Ho∶YAG crystals. The Ho laser properties pumped by the two LDs are compared, including output power, beam quality, and wavelength. At low pump absorption power, the efficiency of laser pumped by 808 nm LD is slightly lower than that of the 784.9 nm LD, which verifies the wide applicability of the new laser realization mechanism based on Tm/Ho bonded gain medium in pump wavelength selection. Using 784.9 nm LD, the maximum output power of 1.89 W is obtained at room temperature, with an optical conversion efficiency of 26.4% and a slope efficiency of 40.78%. Using 808 nm LD, the maximum output power of 1.74 W is obtained at room temperature with an optical conversion efficiency and a slope efficiency of 24.4% and 40.31%, respectively. Under the two pump conditions, the laser wavelength corresponding to the maximum output power is near 2122 nm.

王娟, 黄海洲, 黄见洪, 陈金明, 邓晶, 翁文, 戴殊韬, 吴鸿春, 林文雄. 784.9 nm和808 nm激光二极管抽运Tm/Ho键合激光器[J]. 中国激光, 2018, 45(10): 1001004. Wang Juan, Huang Haizhou, Huang Jianhong, Chen Jinming, Deng Jing, Weng Wen, Dai Shutao, Wu Hongchun, Lin Wenxiong. 784.9 nm and 808 nm Laser Diode Pumped Tm/Ho Bonded Laser[J]. Chinese Journal of Lasers, 2018, 45(10): 1001004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!