首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:102402--1)

一种增强量子点远场定向发光的金属银纳米屋顶结构

A Novel Silver Nanodome Structure for Enhancing Directional Fluorescence Emission in Far Field

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了提高生物检测的灵敏度, 增强量子点的远场定向发光强度显得尤为重要。因此提出一种周期分布在SiO2隔层及金属银反射板上的金属银纳米屋顶结构, 其中每个屋顶结构的半径为162.5 nm, 且量子点位于中间两个屋顶结构的缝隙内。使用时域有限差分算法, 研究了量子点位于不同位置以及不同数量的金属银纳米屋顶结构对量子点远场发光强度的影响。计算表明当有四个纳米屋顶结构, 且量子点处于中间两个屋顶结构的缝隙内部时, 可以有效地提高量子点的远场发光强度, 相较没有屋顶结构时发光强度提高了4倍以上, 从而可以提高生物检测的灵敏度。

Abstract

It is crucial to enhance the far-field directional emission of quantum dots (QDs) in order to improve the sensitivity of bio-detection. In this paper, we propose a novel and effective photonic structure composed of periodically distributed silver nanodomes on a SiO2 film and silver back reflectors. The radius of each nanodome structure is 162.5 nm, and the QD is located in the gap between adjacent silver nanodomes. The finite-difference time-domain (FDTD) method is used to investigate the effect of different QD positions and different quantities of nanodomes on the emission intensity of QDs. The results show that when there are four nanodomes and the QD is located in the gap between adjacent nanodomes, the emission intensity of QDs in the far field is improved by more than four times compared to that of the nanodome free structure. The proposed structure will improve the sensitivity of biological detection.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437

DOI:10.3788/lop55.102402

所属栏目:表面光学

基金项目:国家自然科学基金(11674239, 61307069, 61575138)

收稿日期:2018-03-27

修改稿日期:2018-04-18

网络出版日期:2018-04-27

作者单位    点击查看

郭帅:太原理工大学物理与光电工程学院, 山西 太原 030024新型传感器与智能控制教育部/山西省重点实验室, 山西 太原 030024
赵金凤:大同大学数学与计算机科学学院, 山西 大同 037009
陈智辉:太原理工大学物理与光电工程学院, 山西 太原 030024新型传感器与智能控制教育部/山西省重点实验室, 山西 太原 030024

联系人作者:陈智辉(huixu@126.com)

【1】Yang X S, Zhanghao K, Wang H N, et al. Versatile application of fluorescent quantum dot labels in super-resolution fluorescence microscopy[J]. ACS Photonics, 2016, 3(9): 1611-1618.

【2】Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials, 2005, 4(6): 435-446.

【3】Jonsson M P, Jnsson P, Dahlin A B, et al. Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template[J]. Nano Letters, 2007, 7(11): 3462-3468.

【4】Caldwell J D, Glembocki O J, Bezares F J, et al. Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars[J]. Optics Express, 2011, 19(27): 26056-26064.

【5】Tan H, Ni Z Y, Pi X D, et al. Research progress in application of silicon quantum dots in optoelectronic devices[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030006.
谭华, 倪朕伊, 皮孝东, 等. 硅量子点在光电器件中的应用研究进展[J]. 激光与光电子学进展, 2017, 54(3): 030006.

【6】Chen Z-H, Shi H, Wang Y, et al. Sharp convex gold grooves for fluorescence enhancement in micro/nano fluidic biosensing[J]. Journal of Materials Chemistry B, 2017, 5(44): 8839-8844.

【7】Chen Z-H, Liang L, Wang Y, et al. Tunable high reflective bands to improve quantum dot white light-emitting diodes[J]. Journal of Materials Chemistry C, 2017, 5(5): 1149-1154.

【8】Chen Z H, He L N, Wang Y, et al. Effects of size and distribution of silver nanoparticles on directional fluorescence emission enhancement[J]. IEEE Photonics Journal, 2017, 9(1): 2636741

【9】Gao J. Investigation of silver nanoparticle films in plasmonics for use as fluorescence enhancement of RH6G molecules[J]. Laser & Optoelectronics Progress, 2015, 52(6): 061601.
高俊. Ag纳米薄膜的等离激元对RH6G分子的荧光增强研究[J]. 激光与光电子学进展, 2015, 52(6): 061601.

【10】Petryayeva E, Krull U J. Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review[J]. Analytica Chimica Acta, 2011, 706(1): 8-24.

【11】Geddes C D, Lakowicz J R. Editorial: metal-enhanced fluorescence[J]. Journal of Fluorescence, 2002, 12(2): 121-129.

【12】Lakowicz J R, Ray K, Chowdhury M, et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy[J]. Analyst, 2008, 133(10): 1308-1346.

【13】Choi C J, Semancik S. Multi-resonant plasmonic nanodome arrays for label-free biosensing applications[J]. Nanoscale, 2013, 5(17): 8138-8145.

【14】Lee G Y, Jung K, Jang H S, et al. Upconversion luminescence enhancement in plasmonic architecture with random assembly of metal nanodomes[J]. Nanoscale, 2016, 8(4): 2071-2080.

【15】Herminghaus S. Dynamical instability of thin liquid films between conducting media[J]. Physical Review Letters, 1999, 83(12): 2359-2361.

【16】Alexandrov S A, Zvyagin A V, Dilusha Silva K K M B, et al. Bifocal optical coherence refractometry of turbid media[J]. Optics Letters, 2003, 28(2): 117-119.

【17】Tearney G J, Brezinski M E,Southern J F, et al. Determination of the refractive index of highly scattering human tissue by optical coherence tomography[J]. Optics Letters, 1995, 20(21): 2258-2260.

【18】Palik E D. Handbook of optical constants of solids[M]. New York: Academic Press, 1998.

【19】Hwang E, Smolyaninov I I, Davis C C. Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces[J]. Nano Letters, 2010, 10(3): 813-820.

引用该论文

Guo Shuai,Zhao Jinfeng,Chen Zhihui. A Novel Silver Nanodome Structure for Enhancing Directional Fluorescence Emission in Far Field[J]. Laser & Optoelectronics Progress, 2018, 55(10): 102402

郭帅,赵金凤,陈智辉. 一种增强量子点远场定向发光的金属银纳米屋顶结构[J]. 激光与光电子学进展, 2018, 55(10): 102402

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF