首页 > 论文 > 激光与光电子学进展 > 55卷 > 10期(pp:103001--1)

类石墨烯的光场调控特性

Light Field Modulation of Graphene-Like

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

石墨烯是一种具有二维碳纳米结构的半导体材料, 其在太赫兹波段的研究成果已被用于光电子器件, 而其他二维硫属材料在太赫兹波段的研究却鲜有报道。从理论和实验两方面对高阻硅衬底的石墨烯以及类石墨烯MoS2、WS2在太赫兹波段的吸收机制进行研究。通过太赫兹时域光谱系统测量不同抽运光功率下透过类石墨烯材料的太赫兹光谱, 并进行计算分析, 得到它们的透射谱、光电导率和吸收光谱。结果表明:通过改变光场条件同样可以对这两类类石墨烯材料进行调制; 对于MoS2、WS2, 当施加光场时, 其吸收主要由二硫族化合物激子作用引起。

Abstract

Graphene is a two-dimensional semiconductor material with carbon nanostructure, and it has a wide application prospect in the fields of microchip and materials science. In recent years, the research production of graphene in terahertz band have been used in optoelectronic devices , while the study of other two-dimensional sulfur materials are rarely reported. Therefore, we mainly study the absorption mechanism of graphene and graphene-like MoS2 WS2 on high resistance silicon substrate in the terahertz band from theory and experiment. We measure the terahertz spectrum of graphene-like material with terahertz time-domain spectroscopy system at different pump light powers, and obtain their transmission spectra, photoconductivitis and absorption spectra with calculation and analysis. Results show that we can similarly modulate the two kinds of graphene-like materials by changing the condition of light field. In addition, the absorption of WS2 and MoS2 are caused by the exciton of disulfide when imposing light field.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433.4

DOI:10.3788/lop55.103001

所属栏目:光谱学

基金项目:国家自然科学基金(61565004)、桂林市科学研究与技术开发课题(20150133-3)

收稿日期:2018-03-28

修改稿日期:2018-04-28

网络出版日期:2018-05-07

作者单位    点击查看

张文涛:桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004广西高校光电信息处理重点实验室, 广西 桂林 541004
唐安琪:桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004广西高校光电信息处理重点实验室, 广西 桂林 541004
张玉婷:桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004广西高校光电信息处理重点实验室, 广西 桂林 541004
占平平:桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004广西高校光电信息处理重点实验室, 广西 桂林 541004

联系人作者:张文涛(uestczrk@126.com)

【1】Qi Y Z, Liu J, Zhang J, et al. Wear resistance limited by step edge failure: the rise and fall of graphene as an atomically thin lubricating material[J]. ACS Applied Materials & Interfaces, 2017, 9(1): 1099-1106.

【2】Zheng J, Zhang H, Dong S H, et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide[J]. Nature Communications, 2014, 5: 2995.

【3】Yu Q, Zhao Y J, Yu F, et al. Method for terahertz time-domain spectral analysis based on wavelet transform[J]. Acta Optica Sinica, 2009, 29(3): 838-843.
余倩, 赵跃进, 于飞, 等. 一种基于小波变换的太赫兹时域光谱分析方法[J]. 光学学报, 2009, 29(3): 838-843.

【4】Du L L, Li Q, Li S X, et al. A graphene-based THz spectral active control[J]. Nuclear Techniques, 2015, 38(12): 56-62.
杜亮亮, 李泉, 李绍限, 等. 基于石墨烯的太赫兹分光主动控制[J]. 核技术, 2015, 38(12): 56-62.

【5】Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105.

【6】Datta S, Cai Y Q, Yudhistira I, et al. Tuning magnetoresistance in molybdenum disulphide and graphene using a molecular spin transition[J]. Nature Communications, 2017, 8(1): 677.

【7】Bi W H, Wang X Y, Fu G W, et al. Review on optical modulator based on graphene[J]. Journal of Yanshan University, 2015, 39(3): 189-198.
毕卫红, 王晓愚, 付广伟, 等. 基于石墨烯的光调制器研究进展[J]. 燕山大学学报, 2015, 39(3): 189-198.

【8】Liu M, Yin X B, Zhang X. Double-layer graphene optical modulator[J]. Nano Letters, 2012, 12(3): 1482-1485.

【9】Das S, Salandrino A, Wu J Z, et al. Near-infrared electro-optic modulator based on plasmonic graphene[J]. Optics Letters, 2015, 40(7): 1516-1519.

【10】Chen S, Fan F, Miao Y P, et al. Ultrasensitive terahertz modulation by silicon-grown MoS2 nanosheets[J]. Nanoscale, 2016, 8(8): 4713-4719.

【11】Frey G L, Reynolds K J, Friend R H, et al. Solution-processed anodes from layer-structure materials for high-efficiency polymer light-emitting diodes[J]. Journal of the American Chemical Society, 2003, 125(19): 5998-6007.

【12】Tang P, Xiao J J, Zheng C, et al. Graphene-like molybdenum disulfide and its application in optoelectronic devices[J]. Acta Physico-Chimica Sinica, 2013, 29(4): 667-677
汤鹏, 肖坚坚, 郑超, 等. 类石墨烯二硫化钼及其在光电子器件上的应用[J]. 物理化学学报, 2013, 29(4): 667-677.

【13】Peng L Y, Zhong S C, Zhu L G, et al. Graphene-on-silicon based all-optically-driven terahertz wave intensity modulation[J]. Infrared and Laser Engineering, 2015, 44(3): 974-978.
彭龙瑶, 钟森城, 朱礼国, 等. 基于硅基石墨烯的全光控太赫兹波强度调制系统研究[J]. 红外与激光工程, 2015, 44(3): 974-978.

【14】Liu W. Study on coherent anti-Stokes Raman scattering microscopy imaging techniques with super-diffraction limit[D]. Tianjin: Tianjin University, 2014.
刘伟. 超衍射极限相干反斯托克斯拉曼散射显微成像技术研究[D]. 天津: 天津大学, 2014.

【15】Dawlaty J M, Shivaraman S, Strait J, et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible[J]. Applied Physics Letters, 2008, 93(13): 131905.

【16】Zhang W T, Wang S Y, Zhan P P, et al. Method of identifying red wood based on terahertz time-domain spectroscopy[J]. Acta Optica Sinica, 2017, 37(2): 0230006.
张文涛, 王思远, 占平平, 等. 基于太赫兹时域光谱技术的红木检测方法[J]. 光学学报, 2017, 37(2): 0230006.

引用该论文

Zhang Wentao,Tang Anqi,Zhang Yuting,Zhan Pingping. Light Field Modulation of Graphene-Like[J]. Laser & Optoelectronics Progress, 2018, 55(10): 103001

张文涛,唐安琪,张玉婷,占平平. 类石墨烯的光场调控特性[J]. 激光与光电子学进展, 2018, 55(10): 103001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF