首页 > 论文 > 中国激光 > 45卷 > 11期(pp:1104001--1)

基于局域信号增强的光学元件损伤检测

Optical Damage Inspection Based on Local Signal Enhancement

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现高功率激光驱动器中大口径光学元件表面疵病的低漏检率识别,针对微弱疵病的低信噪比特点,提出了改进的局部信号强度比自适应检测算法。利用信号图像中疵病与邻域非疵病区域的信号强度差异,构造了一类滤波模板对信号图像进行自适应局域增强,可有效提高疵病信号强度值和显著增强信号图像的疵病信噪比。对种子图像进行种子点的筛选与自适应区域生长,并进行精确提取完成损伤区域的完整分割。改进后的局部信号强度比算法能有效识别低信噪比微弱疵病,在全内反射暗场侧向照明成像条件下,可识别出约30 μm的疵病坏点。与现有的局部信号强度比算法相比具有更低的漏检率,结果表明等价圆直径在50 μm以上的损伤点的漏检率低于0.4%。

Abstract

To realize the recognition of surface damages with a low missed detection rate on large aperture optical elements in a high power laser driver and according to the low signal-to-noise ratio characteristic of micro-size damages, an adaptive detection algorithm is proposed based on the improved local signal intensity ratio. The signal intensity difference between the damages and their neighbored non-damage area in signal images is adopted to construct a filter template for the adaptive local enhancement of signal images. Thus, the damage signal intensity can be enhanced effectively and the signal-to-noise ratio of damage on signal images can also be improved significantly. As for the seed images, the seed selection and the adaptive regional growth are performed, and the complete segmentation of damage regions is finished by the accurate extraction. The improved local area signal intensity ratio algorithm can be used to effectively recognize the small-size damage points with a low signal-to-noise ratio. Under the total internal reflection lateral illumination in dark fields, the damage points with size of about 30 μm can be recognized. The missed detection rate is lower than that of the existing local area signal strength algorithm. The results show that the missed detection rate is below 0.4% for damage points with equivalent diameter of above 50 μm.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN247

DOI:10.3788/CJL201845.1104001

所属栏目:测量与计量

基金项目:中国科学院高功率激光物理重点实验室基金(CXJJ-16S040)

收稿日期:2018-04-02

修改稿日期:2018-05-02

网络出版日期:2018-05-11

作者单位    点击查看

田玉婷:中国科学院上海光学精密机械研究所高功率激光物理重点实验室, 上海 201800中国科学院大学, 北京 100049
邬融:中国科学院上海光学精密机械研究所高功率激光物理重点实验室, 上海 201800
杨野:中国科学院上海光学精密机械研究所高功率激光物理重点实验室, 上海 201800中国科学院大学, 北京 100049

联系人作者:邬融(46438131@qq.com)

【1】Carr C W, Cross D A, Liao Z M, et al. The stochastic nature of growth of laser-induced damage[J]. Proceedings of SPIE, 2015, 9532: 953212.

【2】Conder A, Azevedo S, Kegelmeyer L, et al. Final optics damage inspection (FODI) for the National Ignition Facility[J]. Proceedings of SPIE, 2007, 6720: 672010.

【3】Spaeth M L, Wegner P J, Suratwala T I, et al. Optics recycle loop strategy for NIF operations above UV laser-induced damage threshold[J]. Fusion Science and Technology, 2016, 69(1): 265-294.

【4】Yang F F, Miao J, Xie Y J, et al. Internal defects of large optics detected by total internal reflection technique[J]. Chinese Journal of Lasers, 2017, 44(6): 0604005.
杨菲菲, 缪洁, 谢雨江, 等. 全内反射技术检测大口径光学元件体内缺陷[J]. 中国激光, 2017, 44(6): 0604005.

【5】Cui H, Liu S J, Zhao Y A, et al. Study on total internal reflection microscopy for subsurface damage[J]. Acta Optica Sinica, 2014, 34(6): 0612004.
崔辉, 刘世杰, 赵元安, 等. 全内反射显微技术探测亚表面缺陷新方法研究[J]. 光学学报, 2014, 34(6): 0612004.

【6】Guo Y J, Tang S X, Jiang X Q, et al. Damage inspection of optical surface based on galvanometer scanning[J]. Acta Optica Sinica, 2017, 37(6): 0612003.
郭亚晶, 唐顺兴, 姜秀青, 等. 基于振镜扫描方式的光学元件表面损伤检测[J]. 光学学报, 2017, 37(6): 0612003.

【7】Luo M, Bu Y, Xu J H, et al. Optical element surface defect measurement based on multispectral technique[J]. Chinese Journal of Lasers, 2017, 44(1): 0104001.
罗茂, 步扬, 徐静浩, 等. 基于多光谱技术的光学元件表面疵病检测[J]. 中国激光, 2017, 44(1): 0104001.

【8】Lü X D. Research on defect detection and classification in ICF based on machine learning[D]. Harbin: Harbin Institute of Technology, 2015: 11-24.
吕旭冬. 基于机器学习的终端光学元件损伤识别及分类研究[D]. 哈尔滨:哈尔滨工业大学, 2015: 11-24.

【9】Zhang J, Li D H. Algorithm of optics damage inspection from its dark-field image[J]. Chinese Journal of Lasers, 2006, 33(8): 1109-1112.
张际, 李大海. 光学元件损伤暗场成像检测的算法[J]. 中国激光, 2006, 33(8): 1109-1112.

【10】Zhang B, Ni K Z, Wang L J, et al. New algorithm of detecting optical surface imperfection based on background correction and image segmentation[J]. Acta Optica Sinica, 2016, 36(9): 0911004.
张博, 倪开灶, 王林军, 等. 基于背景校正和图像分割定量分析光学元件表面疵病的新算法[J]. 光学学报, 2016, 36(9): 0911004.

【11】Miao J, Li Z, Cui Z J, et al. Dynamic spectral coding fusion imaging detection technique of surface defects[J]. Acta Optica Sinica, 2017, 37(9): 0912002.
缪洁, 李展, 崔子健, 等. 表面疵病动态彩色编码融合成像检测技术[J]. 光学学报, 2017, 37(9): 0912002.

【12】Peng Z T. Study on online laser damage detection of optical components in high power laser complex optic components[D]. Mianyang: China Academy of Engineering Physics, 2011: 67-74.
彭志涛. 强激光复杂光机组件光学元件激光损伤在线检测技术研究[D]. 绵阳: 中国工程物理研究院, 2011: 67-74.

【13】Feng B, Liu B G, Chen F D, et al. Final optics damage online inspection system for ICF[J]. Infrared and Laser Engineering, 2013, 42(9): 2519-2524.
冯博, 刘炳国, 陈凤东, 等. ICF终端光学元件损伤在线检测装置的研究[J]. 红外与激光工程, 2013, 42(9): 2519-2524.

【14】Yang Y Y, Lu C H, Liang J, et al. Microscopic dark-field scattering imaging and digitalization evaluation system of defects on optical devices precision surface[J]. Acta Optica Sinica, 2007, 27(6): 1031-1038.
杨甬英, 陆春华, 梁蛟, 等. 光学元件表面缺陷的显微散射暗场成像及数字化评价系统[J]. 光学学报, 2007, 27(6): 1031-1038.

【15】Feng B, Chen F D, Liu B G, et al. RANSAC-SVM based online inspection technique for optics damage in intertial confinement fusion system[J]. Chinese Journal of Lasers, 2013, 40(8): 0808002.
冯博, 陈凤东, 刘炳国, 等. 基于RANSAC-LSSVM回归的惯性约束聚变光学元件损伤在线检测技术[J]. 中国激光, 2013, 40(8): 0808002.

【16】Peng Z T, Wei X F, Yuan H Y, et al. Signal noise ratio of total internal reflection edge illumination for optics damage inspection[J]. Infrared and Laser Engineering, 2011, 40(6): 1111-1114.
彭志涛, 魏晓峰, 元浩宇, 等. 全内反射照明光学元件损伤检测信噪比分析[J]. 红外与激光工程, 2011, 40(6): 1111-1114.

【17】Feng B. Research on final optics damage online inspection technologies for ICF system[D]. Harbin: Harbin Institute of Technology, 2014: 38-45.
冯博. 惯性约束聚变终端光学元件损伤在线检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 38-45.

【18】Kegelmeyer L M, Fong P W, Glenn S M, et al. Local area signal-to-noise ratio (LASNR) algorithm for image segmentation[J]. Proceedings of SPIE, 2007, 6696: 66962H.

【19】Feng B, Chen F D, Liu B G, et al. Segmentation of small defects in final optics damage online inspection images[C]∥IEEE International Conference on Image Analysis and Signal Processing (IASP), 2012: 1-4.

【20】Verbeek P W, Vrooman H A,van Vliet L J. Low-level image processing by max-min filters[J]. Signal Processing, 1988, 15(3): 249-258.

【21】Agarwal A, Issac A, Dutta M K. A region growing based imaging method for lesion segmentation from dermoscopic images[C]∥IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON), 2017: 632-637.

引用该论文

Tian Yuting,Wu Rong,Yang Ye. Optical Damage Inspection Based on Local Signal Enhancement[J]. Chinese Journal of Lasers, 2018, 45(11): 1104001

田玉婷,邬融,杨野. 基于局域信号增强的光学元件损伤检测[J]. 中国激光, 2018, 45(11): 1104001

被引情况

【1】彭舸,卢礼华,董喆. 激光诱导融石英释放微粒的传播研究. 中国激光, 2019, 46(4): 403001--1

【2】王拯洲,李刚,王伟,夏彦文,王力,谭萌. 基于邻域向量主成分分析图像增强的弱小损伤目标检测方法. 光子学报, 2019, 48(7): 710001--1

【3】王拯洲,段亚轩,王 力,谭 萌,李红光,魏际同. 基于邻域向量内积局部对比度图像增强的光学元件损伤检测. 光学 精密工程, 2019, 27(12): 2668-2682

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF