首页 > 论文 > 中国激光 > 45卷 > 11期(pp:1106001--1)

基于光学Tamm态的石墨烯光调制器

Graphene Optical Modulator Based on Optical Tamm States

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用光学Tamm态(OTS)在金属-分布式布拉格反射镜(DBR)界面处的局域场增强和石墨烯的电控特性,提出一种基于OTS的石墨烯光调制器。利用有限元法和时域有限差分法对提出的调制器进行仿真研究。研究结果表明:当入射波长为850.7 nm时,在金属-DBR界面处会产生OTS,入射光的反射率比较低;当外加驱动电压大于7.5 V时,OTS的本征波长会发生漂移,入射光的反射率增大,可以实现强度调制。调制器的最大调制深度可达0.96,消光比为14.45 dB,在不考虑电路RC时间常数影响的情况下,调制速率超过600 GHz。该结构石墨烯光调制器在一定波长范围内,可以实现调制深度不同的光调制,在未来的光通信系统和光信息处理系统中具有很好的应用前景。

Abstract

By using the local field enhancement of the optical Tamm state (OTS) at the interface of metal-distributed Bragg reflector(DBR) and the electronic control characteristics of graphene, we propose a graphene based light modulator based on OTS. The proposed optical modulator is simulated by finite element method and finite difference time domain method. The results show that when the incident wavelength is 850.7 nm, OTS can be engendered at the metal-DBR interface and the reflectivity of incident light is relatively low. When the driving voltage is greater than 7.5 V, the intrinsic wavelength of OTS drifts and the reflectivity of incident light increases, so that intensity modulation can be achieved. The maximum modulation depth of the optical modulator can be up to 0.96 and the extinction ratio is 14.45 dB. Without considering the effect of RC time constant on the modulation rate, the modulation rate is above 600 GHz. The proposed graphene modulator can be modulated with different modulation depths in a certain wavelength range. It has a good application prospect in the optical communication system and the optical information processing system in the future.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN256

DOI:10.3788/cjl201845.1106001

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(61275067)

收稿日期:2018-05-15

修改稿日期:2018-06-06

网络出版日期:2018-06-14

作者单位    点击查看

王磊:南京邮电大学电子与光学工程学院, 江苏 南京 210023
栾开智:南京邮电大学电子与光学工程学院, 江苏 南京 210023
左依凡:南京邮电大学电子与光学工程学院, 江苏 南京 210023
李培丽:南京邮电大学电子与光学工程学院, 江苏 南京 210023

联系人作者:李培丽(lipl@njupt.edu.cn)

【1】Yu K X , Pang Z G, Jiang A E. Lithium niobate fiber acousto-electro-optic modulator[J]. Journal of Beijing University of Technology, 2004, 30(2): 256-259.
俞宽新, 庞兆广, 蒋安恩. 铌酸锂光纤声电光调制器[J]. 北京工业大学学报, 2004, 30(2): 256-259.

【2】Chen H B, Chen F, She W L. The design of acousto-optic modulator for both phase modulation and amplitude modulation[J]. Acta Photonica Sinica, 2003, 32(2): 166-169.
陈海波, 陈芳, 佘卫龙. 相位、振幅调制两用声光调制器设计[J]. 光子学报, 2003, 32(2): 166-169.

【3】Guo J H, Zhu Z M, Deng W M. A novel magneto-optical modulator[J]. Acta Optica Sinica, 2000, 20(1): 110-113.
郭继华, 朱兆明, 邓为民. 新型磁光调制器[J]. 光学学报, 2000, 20(1): 110-113.

【4】Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474: 64-67.

【5】Liu M, Yin X B, Zhang X. Double-layer graphene optical modulator[J]. Nano Letters, 2012, 12(3): 1482-1485.

【6】Li H, Anugrah Y, Koester S J, et al. Optical absorption in graphene integrated on silicon waveguides[J]. Applied Physics Letters, 2012, 101(11): 111110.

【7】Gosciniak J, Tan D T. Theoretical investigation of graphene-based photonic modulators[J]. Scientific Reports, 2013, 3: 1897.

【8】Du W, Li E P, Hao R. Tunability analysis of a graphene-embedded ring modulator[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2008-2011.

【9】Mohsin M, Schall D, Otto M, et al. Graphene based low insertion loss electro-absorption modulator on SOI waveguide[J]. Optics Express, 2014, 22(12): 15292-15297.

【10】Zhou H C. The properties and applications of optical Tamm states in metal-distributed Bragg reflector[D]. Wuhan: Huazhong University of Science and Technology, 2012: 2-3.
周海春. 金属-分布式布拉格反射镜结构中的光学Tamm态[D]. 武汉: 华中科技大学, 2012: 2-3.

【11】Wang J M. Structure design of graphene-based modulator and study of its characteristics[D]. Chengdu: University of Electronic Science and Technology of China, 2014: 25-26.
王建敏. 基于石墨烯的电光调制器的结构设计及其特性研究[D]. 成都: 电子科技大学, 2014: 25-26.

【12】Chen X F, Li S J, Zhang Y, et al. The wide-angle perfect absorption based on the optical Tamm states[J]. Optoelectronics Letters, 2014, 10(4): 317-320.

【13】Jiang Y. Study of optical Tamm state photonic devices in metal-periodical structure[D]. Chengdu: University of Electronic Science and Technology of China, 2014: 22-26.
蒋瑶. 金属-周期性介质光学Tamm态光子器件研究[D]. 成都: 电子科技大学, 2014: 22-26.

【14】Miloua R, Kebbab Z, Chiker F, et al. Peak, multi-peak and broadband absorption in graphene-based one-dimensional photonic crystal[J]. Optics Communications, 2014, 330: 135-139.

【15】Li T T. The research of graphene-based electro-absorption modulator[D]. Chengdu: University of Electronic Science and Technology of China, 2015: 46-48.
李婷婷. 石墨烯电吸收调制器的基础研究[D]. 成都: 电子科技大学, 2015: 46-48.

【16】Chen H M, Wei X Y. The design of high-speed photonic crystal optical switch[J]. Opto-Electronic Engineering, 2013, 40(11): 34-39.
陈鹤鸣, 卫晓颖. 高速光子晶体光开关的设计[J]. 光电工程, 2013, 40(11): 34-39.

引用该论文

Wang Lei,Luan Kaizhi,Zuo Yifan,Li Peili. Graphene Optical Modulator Based on Optical Tamm States[J]. Chinese Journal of Lasers, 2018, 45(11): 1106001

王磊,栾开智,左依凡,李培丽. 基于光学Tamm态的石墨烯光调制器[J]. 中国激光, 2018, 45(11): 1106001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF