首页 > 论文 > 激光与光电子学进展 > 55卷 > 11期(pp:110001--1)

飞秒激光诱导仿生超疏水材料表面的研究进展

Research Progress on Bioinspired Superhydrophobic Surface Induced by Femtosecond Laser

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

飞秒激光直写技术广泛应用于微加工领域,并在仿生特殊润湿性材料领域取得了重要进展。总结了国内外关于飞秒激光微加工技术在仿生超疏水领域的最新应用进展,并从超疏水表面材料、超疏水相关的功能浸润性和超疏水材料的应用三个方面分别进行了阐述,并展望了该领域未来的发展与挑战。

Abstract

The femtosecond laser direct writing technique is widely used in the micro-fabrication field, and it has been achieved important progresses in the field of bioinspired materials with special wettability. The recent application progresses at home and abroad of the femtosecond laser micromachining technique in the bioinspired superhydrophobic field are summarized, and the analysis from the three aspects of the basic superhydrophobic surface materials, the superhydrophobicity-related functional wettability and the applications of the superhydrophobic materials is completed. The future challenges and progresses in this field are prospected.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:T19

DOI:10.3788/lop55.110001

所属栏目:综述

基金项目:国家自然科学基金(51335008,61475124)、国家自然科学基金委员会与中国工程物理研究院联合基金(U1630111)、中国博士后科学基金(2016M600786)

收稿日期:2017-11-23

修改稿日期:2018-01-09

网络出版日期:2018-04-13

作者单位    点击查看

张径舟:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049西安交通大学电子与信息工程学院陕西省信息光子技术重点实验室, 陕西 西安 710049
陈烽:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049西安交通大学电子与信息工程学院陕西省信息光子技术重点实验室, 陕西 西安 710049
雍佳乐:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049西安交通大学电子与信息工程学院陕西省信息光子技术重点实验室, 陕西 西安 710049
杨青:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049西安交通大学机械工程学院, 陕西 西安 710049
侯洵:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049西安交通大学电子与信息工程学院陕西省信息光子技术重点实验室, 陕西 西安 710049

联系人作者:陈烽(chenfeng@mail.xjtu.edu.cn); 张径舟(287212450@qq.com);

【1】Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.

【2】Zorba V, Stratakis E, Barberoglou M, et al. Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf[J]. Advanced Materials, 2008, 20(21): 4049-4054.

【3】Feng L, Zhang Y, Xi J, et al. Petal effect: A superhydrophobic state with high adhesive force[J]. Langmuir, 2008, 24 (8): 4114-4119.

【4】Gao X, Jiang L. Water-repellent legs of water striders[J]. Nature, 2004, 432(4): 36.

【5】Shi F, Niu J, Liu J, et al. Towards understanding why a superhydrophobic coating is needed by water striders[J]. Advanced Materials, 2010, 19 (17): 2257-2261.

【6】Gao X, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 2010, 19(17): 2213-2217.

【7】Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860.

【8】Zheng Y, Gao X, Jiang L, et al. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3 (2): 178-182.

【9】Barthlott W, Schimmel T, Wiersch S, et al. The salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water[J]. Advanced Materials, 2010, 22(21): 2325-2328.

【10】Wong T, Kang S, Tang S, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447.

【11】Shirtcliffe N, Mchale Glen, Newton M, et al. Plastron properties of a superhydrophobic surface[J]. Applied Physics Letters, 2006, 89(10): 104106.

【12】Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review[J]. Biofouling, 2006, 22(5/6): 339-360.

【13】Sun T, Qng G. Biomimetic smart interface materials for biological applications[J]. Advanced Healthcare Materials, 2011, 23(12): 57-77.

【14】Nakajima A, Hashimoto K, Watanabe T. Recent studies on super-hydrophobic films[J]. Monatshefte für Chemie, 2001, 132(1): 31-41.

【15】Verplanck N, Coffinier Y, Thomy V, et al. Wettability switching techniques on superhydrophobic surfaces[J]. Nanoscale Research Letters, 2007, 2(12): 577-596.

【16】Liu M, Chen Y, Zhang C, et al. Stable superhydrophobic fluorine containing polyfluorenes[J]. Chinese Journal of Polymer Science, 2012, 30(2): 308-315.

【17】Leroy F, Müller-Plathe F. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale[J]. Langmuir, 2011, 27(2): 637-645.

【18】Kim D, Kim Y, Hwang S, et al. Experimental and theoretical evaluation of wettability on micro/nano hierarchically engineered surfaces based on robust micro-post-arrayed-and highly ordered nano-rippled-structures[J]. Applied Surface Science, 2011, 257(21): 8985-8992.

【19】Banerjee I, Pangule R, Kane R. Antifouling coatings: Recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms[J]. Advanced Materials, 2011, 23(6): 690-718.

【20】Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces: From structural control to functional application[J]. Journal of Materials Chemistry, 2008, 18(6): 621-633.

【21】Feng L, Wu L, Wang J, et al. Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors[J]. Advanced Materials, 2012, 24(1): 125-131.

【22】Hong X, Gao X, Jiang L. Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet[J]. Journal of the American Chemical Society, 2007, 129(6): 1478-1479.

【23】Han Y, Levkin P, Abarientos I. Monolithic superhydrophobic polymer layer with photopatterned virtual channel for the separation of peptides using two-dimensional thin layer chromatography-desorption electrospray ionization mass spectrometry[J]. Analytical Chemistry, 2010, 82(6): 2520-2528.

【24】Malvadkar N, Hancock M, Sekeroglu K, et al. An engineered anisotropic nanofilm with unidirectional wetting properties[J]. Nature Materials, 2010, 9(12): 1023-1028.

【25】Tekin H, Tsinman T, Sanchez J, et al. Responsive micromolds for sequential patterning of hydrogel microstructures[J]. Journal of the American Chemical Society, 2011, 133(33): 12944-12947.

【26】Bormasheko E, Musin A, Grynyov R, et al. Floating of heavy objects on liquid surfaces coated with colloidal particles[J]. Colloid and Polymer Science, 2015, 293(2): 567-572.

【27】Wang S, Song Y, Jiang L. Microscale and nanoscale hierarchical structured mesh films with superhydrophobic and superoleophilic properties induced by long-chain fatty acids[J]. Nanotechnology, 2007, 18(1): 015103.

【28】Shirtcliffe N, Aqil S, Evans C, et al. The use of high aspect ratio photoresist (SU-8) for super-hydrophobic pattern prototyping[J]. Journal of Micromechanics and Microengineering, 2004, 14(10): 1384-1389.

【29】Lee S, Kwon T. Effects of intrinsic hydrophobicity on wettability of polymer replicas of a superhydrophobic lotus leaf[J]. Journal of Micromechanics and Microengineering, 2007, 17(4): 687-692.

【30】Luo Z, Zhang Z, Hu L, et al. Stable bionic superhydrophobic coating surface fabricated by a conventional curing process[J]. Advanced Materials, 2008, 20(5): 970-974.

【31】Feng L, Li S, Li H, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angewandte Chemie International Edition, 2002, 41(7): 1221-1223.

【32】Larmour I, Bell S, Saunders G. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition[J]. Angewandte Chemie, 2007, 119(10): 1740-1742.

【33】Wang Z, Lopez C, Hirsa A, et al. Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays[J]. Applied Physics Letters, 2007, 91(2): 023105.

【34】Lim H, Baek J, Park K, et al. Multifunctional hybrid fabrics with thermally stable superhydrophobicity[J]. Advanced Materials, 2010, 22(19): 2138-2141.

【35】Jin R, Yuan J. Biomimetically controlled formation of nanotextured silica/titania films on arbitrary substrates and their tunable surface function[J]. Advanced Materials, 2009, 21(37): 3750-3753.

【36】Zhang J, Li Y, Zhang X, et al. Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays[J]. Advanced Materials, 2010, 22(38): 4249-4269.

【37】Zahner D, Abagat J, Svec F, et al. A facile approach to superhydrophilic-superhydrophobic patterns in porous polymer films[J]. Advanced Materials, 2011, 23(27): 3030-3034.

【38】Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials[J]. Advanced Materials, 2010, 20(15): 1-2.

【39】Cao L, Hu H, Gao D. Design and fabrication of micro-textures for inducing a superhydrophobic behavior on hydrophilic materials[J]. Langmuir, 2007, 23(8): 4310-4314.

【40】Narhe R, Beysens D. Nucleation and growth on a superhydrophobic grooved surface[J]. Physical Review Letters, 2004, 93(7): 076103.

【41】Wu Y, Wei Q, Cai M, et al. Interfacial friction control[J]. Advanced Materials Interfaces, 2014, 2(2): 1400392.

【42】Zhang X, Liu H, Huang X, et al. One-step femtosecond laser patterning of light-trapping structure on dye-sensitized solar cell photoelectrodes[J]. Journal of Materials Chemistry C, 2015, 3(14): 3336-3341.

【43】Bonse J, Baudach S, Krüger J, et al. Femtosecond laser ablation of silicon-modification thresholds and morphology[J]. Applied Physics A, 2002, 74(1): 19-25.

【44】Hwang D, Choi T, Grigoropoulos C. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass[J]. Applied Physics A, 2004, 79(3): 605-612.

【45】Venkatakrishnan K, Tan B, Ngoi B. Femtosecond pulsed laser ablation of thin gold film[J]. Optics& Laser Technology, 2002, 34(3): 199-202.

【46】Brsch N, Krber K, Ostendorf A, et al. Ablation and cutting of planar silicon devices using femtosecond laser pulses[J]. Applied Physics A, 2003, 77(2): 237-242.

【47】Wang W, Liu Y, Liu Y, et al. Direct laser writing of superhydrophobic PDMS elastomers for controllable manipulation via Marangoni effect[J]. Advanced Functional Materials, 2017, 27(44): 1702946.

【48】Winter J, Rapp S, Schmidt M, et al. Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties[J]. Applied Surface Science, 2017, 417: 2-15.

【49】Baldacchini T, Carey J, Zhou M, et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir, 2006, 22(11): 4917-4919.

【50】Zhang J, Chen F, Yang Q, et al. A widely applicable method to fabricate underwater superoleophobic surfaces with low oil-adhesion on different metals by a femtosecond laser[J]. Applied Physics A, 2017, 123(9): 594.

【51】Yong J, Chen F, Yang Q, et al. Superoleophobic surfaces[J]. Chemical Society Review, 2017, 46(14): 4168-4217.

【52】Huo J, Yang Q, Chen F, et al. Underwater transparent miniature “mechanical hand” based on femtosecond laser-induced controllable oil-adhesive patterned glass for oil droplet manipulation[J]. Langmuir, 2017, 33(15): 3659-3665.

【53】Liu M, Wang S, Jiang L. Nature-inspired superwettability system[J]. Nature, 2017, 2(7): 17036.

【54】Yong J, Chen F, Yang Q, et al. Nepenthes inspired design of self-repairing omniphobic slippery liquid infused porous surface (SLIPS) by femtosecond laser direct writing[J]. Advanced Materials Interfaces, 2017, 4(20): 170052.

【55】Yong J, Yang Q, Chen F, et al. Reversible underwater lossless oil droplet transportation[J]. Advanced Materials Interfaces, 2015, 2(2): 1400388.

【56】Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8): 988-994.

【57】Cassie A, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40(1): 231-263.

【58】Feng L, Li S, Li H, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angewandte Chemie, 2002, 41(7): 1221-1223.

【59】Marmur A, Bittoun E. When Wenzel and Cassie are right: Reconciling local and global considerations[J]. Langmuir, 2009, 25(3): 1277-1281.

【60】Skoulas E, Manousaki A, Fotakis C, et al. Biomimetic surface structuring using cylindrical vector femtosecond laser beams[J]. Scientific Report, 2017, 7: 45114.

【61】Sugioka K, Cheng Y. Ultrafast lasers-reliable tools for advanced materials processing[J]. Light: Science & Applications, 2014, 3(4): e149.

【62】Yong J, Chen F, Yang Q, et al. Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser[J]. ACS Applied Materials Interfaces, 2013, 5(19): 9382-9385.

【63】Yong J, Chen F, Yang Q, et al. Femtosecond laser controlled wettability of solid surfaces[J]. Soft Matter, 2015, 11(46): 8897.

【64】Vorobyev A, Guo C. Femtosecond laser modification of material wetting properties: A brief review[J]. Science of Advanced Materials, 2012, 4(3): 432-438.

【65】Zhou W P, Wang S T, Yu Y C, et al. Research progress in fabrication of embedded microball lenses, energy devices and biosensors by femtosecond laser direct writing[J]. Chinese Journal of Lasers, 2017, 44(1): 0102002.
周伟平, 王树同, 于泳超, 等. 飞秒激光直写制备内嵌微透镜、能源器件及生物传感器的研究进展[J]. 中国激光, 2017, 44(1): 0102002.

【66】Pan H H, Wang Z, Fan W Z, et al. Superhydrophobic titanium surface micro/nanostructures induced by femtosecond laser[J]. Chinese Journal of Lasers, 2016, 43(8): 0802002.
泮怀海, 王卓, 范文中, 等. 飞秒激光诱导超疏水钛表面微纳结构[J]. 中国激光, 2016, 43(8): 0802002.

【67】Pendurthi A, Movafaghi S, Wang W, et al. Fabrication of nanostructured omniphobic and superomniphobic surfaces with inexpensive CO2 laser engraver[J]. ACS Applied Materials Interfaces, 2017, 9(31): 25656-25661.

【68】Li H, Fan W, Pan H, et al. Fabrication of "petal effect" surfaces by femtosecond laser-induced forward transfer[J]. Chemical Physics Letters, 2017, 667: 20-24.

【69】Wu B, Zhou M, Li J, et al. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser[J]. Applied Surface Science, 2009, 256(1): 61-66.

【70】Wang B, Wang X, Zheng H, et al. Surface wettability modification of cyclic olefin polymer by direct femtosecond laser irradiation[J]. Nanomaterials, 2015, 5(3): 1442-1453.

【71】Vorobyev A Y, Guo C. Multifunctional surfaces produced by femtosecond laser pulses[J]. Journal of Applied Physics, 2015, 117(3): 033103.

【72】Yong J, Yang Q, Chen F, et al. Stable superhydrophobic surface with hierarchical mesh-porous structure fabricated by a femtosecond laser[J]. Applied Physics A, 2013, 111(1): 243-249.

【73】Ahsan M, Dewanda F, Lee M, et al. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses[J]. Applied Surface Science, 2013, 265(2): 784-789.

【74】Kam D H, Bhattacharya S, Mazumder J. Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification[J]. Journal of Micromechanics and Microengineering, 2012, 22(10): 105019.

【75】Tang M, Hong M, Choo Y, et al. Super-hydrophobic transparent surface by femtosecond laser micro-patterned catalyst thin film for carbon nanotube cluster growth[J]. Applied Physics A, 2010, 101(3): 503-508.

【76】Zorba V, Stratakis E, Barberoglou M, et al. Tailoring the wetting response of silicon surfaces via fs laser structuring[J]. Applied Physics A, 2008, 93(4): 819-825.

【77】Zhou M, Yang H, Li B, et al. Forming mechanisms and wettability of double-scale structures fabricated by femtosecond laser[J]. Applied Physics A, 2009, 94(3): 571-576.

【78】Barberoglou M, Zorba V, Stratakis E, et al. Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon[J]. Applied Surface Science, 2009, 255(10): 5425-5429.

【79】Farshchian B, Gatabi J, Bernick S, et al. Laser-induced superhydrophobic grid patterns on PDMS for droplet arrays formation[J]. Applied Surface Science, 2017, 396: 359-365.

【80】He H, Qu N, Zeng Y, et al. Lotus-leaf-like microstructures on tungsten surface induced by one-step nanosecond laser irradiation[J]. Surface & Coating Technology, 2016, 307: 898-907.

【81】Ahmmed K M, Patience C, Kietzig A. Internal and external flow over laser-textured superhydrophobic polytetrafluoroethylene (PTFE)[J]. ACS Applied Materials Interfaces, 2016, 8(40): 27411-27419.

【82】Hisler V, Jendoubi H, Hairaye C, et al. Tensiometric characterization of superhydrophobic surfaces as compared to the sessile and bouncing drop methods[J]. Langmuir, 2016, 32(31): 7765-7773.

【83】Toosi S F, Moradi S, Kamal S, et al. Superhydrophobic laser ablated PTFE substrates[J]. Applied Surface Science, 2015, 349: 715-723.

【84】Liang F, Lehr J, Danielczak L, et al. Robust non-wetting PTFE surfaces by femtosecond laser machining[J]. International Journal of Molecular Sciences, 2014, 15(8): 13681-13696.

【85】Cardoso M, Tribuzi V, balogh D, et al. Laser microstructuring for fabricating superhydrophobic polymeric surfaces[J]. Applied Surface Science, 2011, 257(8): 3281-3284.

【86】Yoon T, shin H, Teoung S, et al. Formation of superhydrophobic poly (dimethysiloxane) by ultrafast laser-induced surface modification[J]. Optics Express, 2008, 16(17): 12715-12725.

【87】Yong J, Chen F, Yang Q, et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion[J]. Journal of Physics Chemistry C, 2013, 117(47): 24907-24912.

【88】Moradi S, Hatzlklrlakos S, Kamal S, et al. Superhydrophobic laser-ablated stainless steel substrates exhibiting Cassie-Baxter stable state[J]. Surface Innovation, 2015, 3(3): 151-163.

【89】Yong J, Chen F, Yang Q, et al. Photoinduced switchable underwater superoleophobicity-superoleophilicity on laser modified titanium surfaces[J]. Journal of Materials Chemistry A, 2015, 3(20): 10703-10709.

【90】Li B, Zhou M, Yuan R, et al. Fabrication of titanium-based microstructured surfaces and study on their superhydrophobic stability[J]. Journal of Materials Research, 2008, 23(9): 2491-2499.

【91】Long J, Pan L, Fan P, et al. Cassie-state stability of metallic superhydrophobic surfaces with various micro nanostructures produced by a femtosecond laser[J]. Langmuir, 2016, 32(4): 1066-1072.

【92】Marie A, Hatzikiriakos S, Englezos P. Patterned superhydrophobic metallic surfaces[J]. Langmuir, 2009, 25(8): 4821-4827.

【93】Kietzig A, Mirvakili M, Kamal S, et al. Laser-patterned super-hydrophobic pure metallic substrates: Cassie to Wenzel wetting transitions[J]. Journal of Adhesion Science and Technology, 2011, 25(20): 2789-2809.

【94】Li B, Li H, Huang L, et al. Femtosecond pulsed laser textured titanium surfaces with stable superhydrophilicity and superhydrophobicity[J]. Applied Surface Science, 2016, 389: 585-593.

【95】Ta V, Dunn A, Wasley T, et al. Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition[J]. Applied Surface Science, 2016, 365: 153-159.

【96】Frankiewicz C, Attinger D. Texture and wettability of metallic lotus leaves[J]. Nanoscale, 2016, 8(7): 3982-3990.

【97】Yong J, Chen F, Yang Q, et al. Femtosecond laser induced hierarchical ZnO superhydrophobic surfaces with switchable wettability[J]. Chemical Communication, 2015, 51(48): 9813-9816.

【98】Chen F, Zhang D, Yang Q, et al. Bioinspired wetting surface via laser microfabrication[J]. ACS Applied Materials Interfaces, 2013, 5(15): 6777-6792.

【99】Vorobyev A, Guo C. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Review, 2013, 7(3): 385-407.

【100】Nayak B, Caffrey P, Speck C, et al. Superhydrophobic surfaces by replication of micro/nano-structures fabricated by ultrafast-laser-microtexturing[J]. Applied Surface Science, 2013, 266(2): 27-32.

【101】Li B, Zhou M, Zhang W, et al. Comparison of structures and hydrophobicity of femtosecond and nanosecond laser-etched surfaces on silicon[J]. Applied Surface Science, 2012, 263(24): 45-49.

【102】Yong J, Chen F, Yang Q, et al. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays[J]. Langmuir, 2013, 29(10): 3274-3279.

【103】Yong J, Chen F, Yang Q, et al. Femtosecond laser controlling underwater oil-adhesion of glass surface[J]. Applied Physics A, 2015, 119(3): 837-844.

【104】Long J, Fan P, Gong D, et al. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: From lotus leaf to rose petal[J]. ACS Applied Materials Interfaces, 2015, 7(18): 9858-9865.

【105】Li J, Jing Z, Yang Y, et al. From Cassie state to Gecko state: A facile hydrothermal process for the fabrication of superhydrophobic surfaces with controlled sliding angles on zinc substrates[J]. Surface & Coatings Technology, 2014, 258: 973-978.

【106】Geogre J, Vanessa R, Mathur D, et al. Self-cleaning superhydrophobic surfaces with underwater superaerophobicity[J]. Materials and Design, 2016, 100: 8-18.

【107】Yong J, Yang Q, Chen F, et al. Bioinspired superhydrophobic surfaces with directional adhesion[J]. RSC Advances, 2014, 4(16): 8138-8143.

【108】Yong J, Yang Q, Chen F, et al. Superhydrophobic PDMS surfaces with three-dimensional(3D) pattern-dependent controllable adhesion[J]. Applied Surface Science, 2014, 288: 579-583.

【109】Zhang D, Chen F, Yang Q, et al. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser[J]. ACS Applied Materials Interfaces, 2012, 4(9): 4906-4912.

【110】Chen F, Zhang D, Yang Q, et al. Anisotropic wetting on microstrips surface fabricated by femtosecond laser[J]. Langmuir, 2011, 27(1): 359-365.

【111】Zhang D, Chen F, Yang Q, et al. Mutual wetting transition between isotropic and anisotropic on directional structures fabricated by femtosecond laser[J]. Soft Matter, 2011, 7(18): 8337-8342.

【112】Zhang D, Chen F, Fang G, et al. Wetting characteristics on hierarchical structures patterned by a femtosecond laser[J]. Journal of Micromechanics and Microengineering, 2010, 20(7): 075029.

【113】Yong J, Yang Q, Chen F, et al. A simple way to achieve superhydrophobicity controllable water adhesion, anisotropic sliding, and anisotropic wetting based on femtosecond-laser-induced line-patterned surfaces[J]. Journal of Materials Chemistry A, 2014, 2(15): 5499-5507.

【114】Long J, Fan P, Jiang D, et al. Anisotropic sliding of water droplets on the superhydrophobic surfaces with anisotropic groove-like micro/nano structures[J]. Advanced Materials Interfaces, 2016, 24(3): 1600641.

【115】Liu Y, Li S, Niu S, et al. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate[J]. Applied Surface Science, 2016, 379: 230-237.

【116】Jiang H, Zhang Y, Liu Y, et al. Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil[J]. Laser & Photonics Review, 2016, 10(3): 441-450.

【117】Huang H, Yang L, Bai S, et al. Blackening of metals using femtosecond fiber laser[J]. Applied Optics, 2015, 54(2): 324-333.

【118】Davaasuren G, Ngo C, Oh H, et al. Geometric study of transparent superhydrophobic surfaces of molded and grid patterned polydimethylsiloxane (PDMS)[J]. Applied Surface Science, 2014, 314(24): 530-536.

【119】Stroj S, Kasemann S, Domke M, et al. Transparent superhydrophobic surfaces with high adhesion generated by the combination of femtosecond laser structuring and wet oxidation[J]. Applied Surface Science, 2017, 420: 550-557.

【120】Gong D, Long J, Jiang D, et al. Robust and stable transparent superhydrophobic polydimethylsiloxane films by duplicating via a femtosecond laser ablated template[J]. ACS Applied Materials Interfaces, 2016, 8(27): 17511-17518.

【121】Fang Y, Yong J, Chen F, et al. Durability of the tunable adhesive superhydrophobic PTFE surfaces for harsh environment applications[J]. Applied Physics A, 2016, 122(9): 827.

【122】Jiang D, Fan P, Gong D, et al. High-temperature imprinting and superhydrophobicity of micro/nano surface structures on metals using molds fabricated by ultrafast laser ablation[J]. Journal of Materials Processing Technology, 2016, 236: 56-63.

【123】Boinovich L, Domantovskiy A G, Emelyanenko A M, et al. Femtosecond laser treatment for the design of electro-insulating superhydrophobic coatings with enhanced wear resistance on glass[J]. ACS Applied Materials Interfaces, 2014, 6(3): 2080-2085.

【124】Pazokian H, Selimis A, Barzin J, et al. Tailoring the wetting properties of polymers from highly hydrophilic to superhydrophobic using UV laser pulses[J]. Journal of Micromechanics and Microengineering, 2012, 22(3): 035001.

【125】Papadopoulou E, Barberoglou M, Zorba V, et al. Reversible photoinduced wettability transition of hierarchical ZnO structures[J]. Journal of Physics Chemistry C, 2009, 113(7): 2891-2895.

【126】Wang D, Liu Y, Liu X, et al. Towards a tunable and switchable water adhesion on a TiO2 nanotube film with patterned wettability[J]. Chemical Communications, 2009, 45(45): 7018.

【127】Kruse C, Anderson T, Wilson C, et al. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2013, 29(31): 9798-9806.

【128】Kietzig A, Mirvakili M, Kamal S, et al. Nanopatterned metallic surfaces: Their wettability and impact on ice friction[J]. Journal of Adhesion Science and Technology, 2011, 25(12): 1293-1303.

【129】Yong J, Yang Q, Chen F, et al. A bioinspired planar superhydrophobic microboat[J]. Journal of Micromechanics and Microengineering, 2014, 24(3): 035006.

【130】Alshehri A, Hadjiantoniou S, Hickey R, et al. Selective cell adhesion on femtosecond laser-microstructured polydimethylsiloxane[J]. Biomedical Materials, 2016, 11(1): 015014.

【131】Razi S, Mollabashi M, Madanipour K. Laser processing of metallic biomaterials: An approach for surface patterning and wettability control[J]. European Physical Journal Plus, 2015, 130(12): 1-12.

【132】Li H, Lai Y, Huang J, et al. Multifunctional wettability patterns prepared by laser processing on superhydrophobic TiO2 nanostructured surfaces[J]. Journal of Materials Chemistry B, 2014, 3(3): 342-347.

【133】Fadeeva E, Truong V, Stiesch M, et al. Bacterial retention on superhydrophobic titanium surfaces fabricated by femtosecond laser ablation[J]. Langmuir, 2011, 27(6): 3012-3019.

【134】Stratakis E, Ranella A, Fotakis C. Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications[J]. Biomicrofluidics, 2011, 5(1): 013411.

【135】Fadeeva E, Schlie S, Koch J, et al. Selective cell control by surface structuring for orthopedic applications[J]. Journal of Adhesion Science and Technology, 2010, 24(13/14): 2257-2270.

【136】Ranella A, Barberoglou M, Bakogianni S, et al. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures[J]. Acta Biomaterialia, 2010, 6(7): 2711-2720.

【137】Truong V, Webb H, Fadeeva E, et al. Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium[J]. Biofouling, 2012, 28(6): 539-550.

【138】Yong J, Fang Y, Chen F, et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: Separating oil from water and corrosive solutions[J]. Applied Surface Science, 2016, 389: 1148-1155.

【139】Li G, Fan H, Ren F, et al. Multifunctional ultrathin aluminum foil: Oil/water separation and particle filtration[J]. Journal of Materials Chemistry A, 2016, 4(48): 18832-18840.

【140】Sarbada S, Shin Y. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser[J]. Applied Surface Science, 2017, 405: 465-475.

【141】Ren F, Li G, Zhang Z, et al. A single-layer Janus membrane with dual gradient conical micropore arrays for self-driving fog collection[J]. Journal of Materials Chemistry A, 2017, 5(35): 18403-18408.

【142】Lu Y, Yu L, Zhang Z, et al. Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laser irradiation for enhanced water collection[J]. RSC Advanced, 2017, 7(18): 11170-11179.

【143】Wang A, Jiang L, Li X, et al. Low-adhesive superhydrophobic surface-enhanced Raman spectroscopy substrate fabricated by femtosecond laser ablation for ultratrace molecular detection[J]. Journal of Materials Chemistry B, 2017, 5(4): 777-784.

引用该论文

Zhang Jingzhou,Chen Feng,Yong Jiale,Yang Qing,Hou Xun. Research Progress on Bioinspired Superhydrophobic Surface Induced by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110001

张径舟,陈烽,雍佳乐,杨青,侯洵. 飞秒激光诱导仿生超疏水材料表面的研究进展[J]. 激光与光电子学进展, 2018, 55(11): 110001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF