首页 > 论文 > 红外 > 39卷 > 9期(pp:14-21)


Grating-type Ultra-broad Band Far-infrared Absorber Based on InP, InAs and InSb

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文


设计了一种由磷化铟(InP)、砷化铟(InAs)和锑化铟(InSb)3种半导体材料复合而成的槽深线性渐变的光栅型超宽带远红外线吸收器。其吸收机理是表面等离子共振效应和电介质腔共振效应。利用频域有限差分法(Finite-Difference Frequency-Domain,FDFD)计算的结果表明,凹槽个数的改变对吸收率的影响相对较大,而凹槽深度、凹槽宽度、涂层厚度和光栅周期的变化对吸收率的影响相对较小。在采用优化的结构参数条件下,以及入射角为0~80°和入射波长为28~75 m的范围内,此吸收器的平均吸收率可达到92%以上。本文所设计的吸收器有望在远红外探测等方面得到应用。


A grating-type ultra-broad band far infrared absorber based on three kinds of semiconductor materials: indium phosphide (InP), indium arsenide (InAs) and indium antimonide (InSb) is designed. The groove depth of the absorber is changed gradually. Its absorption mechanism is surface plasma resonance and dielectric cavity resonance. They are calculated by a finite-difference frequency-domain (FDFD) method. The calculation results show that the change of the number of the groove has a relatively great influence on the absorptivity of the absorber while the changes of groove depth, groove width, coating thickness and grating period has a less influence on the absorptivity of the absorber. Under the condition of optimized structural parameters, the average absorptivity of the absorber is greater than 92% in the incident wavelength range from 28 to 75 m at the incident angle from 0 to 80 degree. The absorber designed is expected to find applications in far infrared detection, etc.








作者单位    点击查看

赵晨:山西大学物理电子工程学院,山西 太原 030006
薛文瑞:山西大学物理电子工程学院,山西 太原 030006
陈曦:山西大学物理电子工程学院,山西 太原 030006
陈岳飞:山西大学物理电子工程学院,山西 太原 030006
李昌勇:山西大学激光光谱学研究所量子光学与光量子器件国家重点实验室,山西 太原 030006山西大学极端光学协同创新中心,山西 太原 030006



【1】Cui Y, He Y, Jin Y, et al. Plasmonic and Metamaterial Structures as Electromagnetic Absorbers [J]. Laser & Photonics Reviews, 2014, 8(4):495-520.

【2】Landy N I, Sajuyigbe S, Mock J J, et al. Perfect Metamaterial Absorber [J]. Physical Review Letters, 2008, 100(20):207402.

【3】He S, Chen T. Broadband THz Absorbers With Graphene-Based Anisotropic Metamaterial Films [J]. IEEE Transactions on Terahertz Science & Technology, 2013, 3(6):757-763.

【4】Bai Y, Zhao L, Ju D, et al. Wide-angle, Polarization-independent and Dual-band Infrared Perfect Absorber Based on L-shaped Metamaterial [J]. Optics Express, 2015, 23(7):8670-8680.

【5】陈曦,薛文瑞,赵晨,等. 基于LiF和NaF的超宽带红外吸收器 [J].光学学报,2018, 38(1): 0123002.

【6】Le P J, Quémerais P, Barbara A, et al. Why Metallic Surfaces with Grooves a Few Nanometers Deep and Wide May Strongly Absorb Visible Light [J]. Physical Review Letters, 2008, 100(6):066408.

【7】梁磊霞,薛文瑞,杨荣草. 槽深线性渐变的表面等离子光栅光吸收器 [J]. 光学学报,2017, 37(1): 0123002.

【8】Wu T, Lai J, Wang S, et al. UV-visible Broadband Wide-angle Polarization-insensitive Absorber Based on Metal Groove Structures with Multiple Depths [J]. Applied Optics, 2017, 56(21): 5844.

【9】Bouchon P, Koechlin C, Pardo F, et al. Wideband Omnidirectional Infrared Absorber with a Patchwork of Plasmonic Nanoantennas [J]. Optics Letters, 2012, 37(6):1038.

【10】Bossard J A, Lin L, Yun S, et al. Near-ideal Optical Metamaterial Absorbers with Super-octave Bandwidth [J]. Acs Nano, 2014, 8(2):1517-24.

【11】Liu Z, Zhan P, Chen J, et al. Dual Broadband Near-infrared Perfect Absorber Based on a Hybrid Plasmonic-photonic Microstructure [J]. Optics Express, 2013, 21(3):3021-30.

【12】Corrigan T D, Dong H P, Drew H D, et al. Broadband and Mid-infrared Absorber Based on Dielectric-thin Metal Film Multilayers [J]. Applied Optics, 2012, 51(8):1109-1114.

【13】Zhang B, Hendrickson J, Guo J, et al. Wideband Perfect Light Absorber at Midwave Infrared Using Multiplexed Metal Structures [J]. Optics Letters, 2012, 37(3):371-373.

【14】Hendrickson J, Guo J, Zhang B, et al. Wideband Perfect Light Absorber at Midwave Infrared Using Multiplexed Metal Structures. [J]. Optics Letters, 2012, 37(3):371-373.

【15】Advena D J, Bly V T, Cox J T. Deposition and Characterization of Far-infrared Absorbing Gold Black Films. [J]. Appl Opt, 1993, 32(7):1136-1144.

【16】Feng Q, Pu M, Hu C, et al. Engineering the Dispersion of Metamaterial Surface for Broadband Infrared Absorption. [J]. Optics Letters, 2012, 37(11):2133-2135.

【17】Ye C, Zhu Z, Xu W, et al. Electrically Tunable Absorber Based on Nonstructured Graphene [J]. Journal of Optics, 2015, 17(12):125009.

【18】Parvaz R, Karami H. Far-infrared Multi-resonant Graphene-based Metamaterial Absorber [J]. Optics Communications, 2017, 396:267-274.

【19】Yang J, Pang Y, Wang J, et al. Ultrabroadband Polarization-insensitive Far-infrared Metameterial Absorber by Gold Nanowire Array [C]. Applied Computational Electromagnetics Society Symposium, 2017:1-3.

【20】Woodward R M, Cole B E, Wallace V P, et al. Terahertz Pulse Imaging in Reflection Geometry of Human Skin Cancer and Skin Tissue [J]. Physics in Medicine & Biology, 2002, 47(21):3853-3863.

【21】Waters J W, Froidevaux L, Harwood R S, et al. The Earth Observing System Microwave Limb Sounder on the Aura Satellite [J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 44(5):1075-1092.

【22】Appleby R, Wallace H B. Standoff Detection of Weapons and Contraband in the 100 GHz to 1 THz Region [J]. IEEE Transactions on Antennas & Propagation, 2007, 55(11):2944-2956.

【23】Nagai N, Sumitomo M, Imaizumi M, et al. Characterization of Electron- or Proton-irradiated Si Space Solar Cells by THz Spectroscopy [J]. Semiconductor Science & Technology, 2006, 21(2):201.

【24】Pilbratt G L, Riedinger J R, Passvogel T, et al. Herschel Space Observatory-An ESA Facility for Far-infrared and Submillimetre Astronomy [J]. Astronomy & Astrophysics, 2010, 518(3):383-416.

【25】Korobkin D, Urzhumov Y, Shvets G. Enhanced Near-field Resolution in Midinfrared Using Metamaterials [J]. Journal of the Optical Society of America B, 2006, 23(3): 468-478.

【26】Hass M, Henvis B W. Infrared Lattice Reflection Spectra of III-V Compound Semiconductors [J]. Journal of Physics & Chemistry of Solids, 1962, 23(8):1099-1104.

【27】Sanderson R B. Far Infrared Optical Properties of Indium Antimonide [J]. Journal of Physics & Chemistry of Solids, 1965, 26(5):803-810.

【28】Paul R K, Penchev M, Zhong J, et al. Chemical Vapor Deposition and Electrical Characterization of Sub-10 nm Diameter InSb Nanowires and Field-effect Transistors [J]. Materials Chemistry & Physics, 2010, 121(3):397-401.

【29】Miyazaki H T, Kurokawa Y. Controlled Plasmon Resonance in Closed Metal/insulator/metal Nanocavities [J]. Applied Physics Letters, 2006, 89(21):211126-1-211126-3.

【30】Chen Y. Nanofabrication by Electron Beam Lithography and Its Applications: A Review [J]. Microelectronic Engineering, 2015, 135:57-72.

【31】Zhang W, Potts A, Bagnall D M, et al. High-resolution Electron Beam Lithography for the Fabrication of High-density Dielectric Metamaterials [J]. Thin Solid Films, 2007, 515(7-8):3714-3717.

【32】Wu S D, Guo L W, Li Z H, et al. Effect of the Low-temperature Buffer Thickness on Quality of InSb Grown on GaAs Substrate by Molecular Beam Epitaxy [J]. Journal of Crystal Growth, 2005, 277(1):21-25.

【33】Khan M Z M, Ng T K, Ooi B S. Self-assembled InAs/InP Quantum Dots and Quantum Dashes: Material Structures and Devices [J]. Progress in Quantum Electronics, 2014, 38(6):237-313.

【34】Moiseev K D, Mikhailova M P, Yakovlev Y P, et al. Photoluminescence of Ga0.94In0.06As0.13Sb0.87 Solid Solution Lattice Matched to InAs [J]. Optical Materials, 2002, 19(4):455-459.

【35】龚秀英, Chner K S L, Zwicknagl P, 等. InP衬底上GaInAsSb的液相外延生长及其性质的研究 [J]. 发光学报, 1987, 8(3):206-215.

【36】Xue W R, Chen X, Peng Y L , et al. Grating-type Mid-infrared Light Absorber Based on Silicon Carbide Material [J]. Optics Express, 2016, 24(20): 22596.

【37】陈曦, 薛文瑞, 赵晨, 等. 基于复合凹槽的光栅型红外线吸收器 [J]. 红外与毫米波学报, 2018, 37(1): 87-92.

【38】李兴玮,白圣建,孙即祥. 数值研究一种基于腔共振和电共振的近红外双频段超材料吸收器 [J]. 红外与毫米波学报, 2016, 35(5): 538-542.


ZHAO Chen,XUE Wen-rui,CHEN Xi,CHEN Yue-fei,LI Chang-yong. Grating-type Ultra-broad Band Far-infrared Absorber Based on InP, InAs and InSb[J]. INFRARED, 2018, 39(9): 14-21

赵晨,薛文瑞,陈曦,陈岳飞,李昌勇. 基于磷化铟、砷化铟和锑化铟的光栅型超宽带远红外线吸收器[J]. 红外, 2018, 39(9): 14-21

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF