首页 > 论文 > 红外与激光工程 > 47卷 > 10期(pp:1003004--1)

GaSb基光泵浦半导体碟片激光器的研究进展(特邀)

Research progress of GaSb based optically pumped semiconductor disk lasers(invited)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

GaSb基光泵浦半导体碟片激光器(OP-SDLs)可以获得高光束质量和高功率的红外激光输出, 是近年来新型中红外激光器件研究领域的热点。文中介绍了GaSb基光泵浦半导体碟片激光器增益芯片的外延结构和工作原理, 综述了2 μm波段GaSb基泵浦半导体碟片激光器的研究进展, 讨论了该类激光器的波长扩展、功率提升、实现窄线宽短脉冲发射和有效热管理关键问题, 评述了性能发展的主要技术方向和应用前景。

Abstract

GaSb based optically pumped semiconductor disk lasers (OP-SDLs) attracts considerable attention in novel mid-infrared laser device research field for their potential excellent beam quality and high output power. The epitaxy structure and basic principle of GaSb based OP-SDLs wafers were summarized. The development of GaSb based OP-SDLs at 2 μm wavelength was reviewed respectively by analyzing the aspects of wavelength extending, power scaling, line-width narrowing, short-pulse generation and effective thermal management. The technical development direction and application prospects of this type of laser were discussed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN24

DOI:10.3788/irla201847.1003004

所属栏目:特约专栏-“红外半导体激光器”

基金项目:国家自然科学基金(61790580); 国家973计划(2014CB643903)

收稿日期:2018-05-07

修改稿日期:2018-06-12

网络出版日期:--

作者单位    点击查看

尚金铭:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
张 宇:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
杨成奥:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
谢圣文:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
黄书山:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
袁 野:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
张 一:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
邵福会:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
徐应强:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049
牛智川:中国科学院半导体研究所 半导体超晶格国家重点实验室, 北京 100083中国科学院大学 材料科学与光电技术学院, 北京 100049

联系人作者:尚金铭(shangjinming@semi.ac.cn)

备注:尚金铭(1993-), 男, 博士生, 主要从事锑化物半导体激光器方面的研究。

【1】Nikitichev A A, Stepanov A I. 2-mm lasers for optical monitoring[J]. Journal of Optical Technology c/c of Opticheskii Zhurnal, 1999, 66(66): 718-723.

【2】Zhang Dongyan, Wang Rongrui. Progress on mid-infrared lasers[J]. Laser and Infrared, 2011, 41(5): 487-491. (in Chinese)

【3】Werle P. A review of recent advances in semiconductor laser based gas monitors[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 1998, 54(2): 197-236.

【4】Mikhailova M P, Titkov A N. Type II heterojunctions in the GaInAsSb/GaSb system[J]. Semiconductor Science & Technology, 1994, 9(7): 1279-1284.

【5】Baranov A N, Cuminal Y, Boissier G, et al. Electroluminescence of GaInSb/GaSb strained single quantum well structures grown by molecular beam epitaxy[J]. Semiconductor Science & Technology, 1996, 11(8): 1185-1190.

【6】Tilma B W, Mangold M, Zaugg C A, et al. Recent advances in ultrafast semiconductor disk lasers[J]. Light Science & Applications, 2015, 4(7): e310.

【7】Ville-Markus Korpijarvi, Kantola E L, Leinonen T, et al. Monolithic GaInNAsSb/GaAs VECSEL operating at 1 550 nm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 480-484.

【8】Kantola E, Leinonen T, Ranta S, et al. 1 180 nm VECSEL with 50 W output power[C]//SPIE, 2015, 9349: 93490U.

【9】Kantola E, Leinonen T, Penttinen J P, et al. 615 nm GaInNAs VECSEL with output power above 10 W[J]. Optics Express, 2015, 23(16): 20280.

【10】Myara M, Garnache A. Industrial integration of high coherence tunable single frequency semiconductor lasers based on VECSEL technology for scientific instrumentation in NIR and MIR[C]//SPIE, 2017, 10087:1008704.

【11】Burns D, Hopkins J M, Kemp A J, et al. Recent developments in high-power short-wave mid-infrared semiconductor disk lasers[C]//SPIE, 2009: 7193.

【12】Rosener B, Rattunde M, Kaspar S, et al. GaSb-based optically pumped semiconductor disk lasers emitting in the 2.0-2.8 μm wavelength range[C]//SPIE, 2010, 7578: 75780X.

【13】Kaspar S, Rattunde M, Topper T, et al. Recent advances in 2-μm GaSb-based semiconductor disk laser—power scaling, narrow-linewidth and short-pulse operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1501908.

【14】Schulz N, Rattunde M, Manz C, et al. Optically pumped GaSb-based VECSEL emitting 0.6 W at 2.3 μm[J]. IEEE Photonics Technology Letters, 2006, 18(9): 1070-1072.

【15】Corzine S W, Geels R S, Scott J W, et al. Design of Fabry-Perot surface-emitting lasers with a periodic gain structure[J]. IEEE Journal of Quantum Electronics, 1989, 25(6): 1513-1524.

【16】Cerutti L, Garnache A, Genty F, et al. Low threshold, room temperature laser diode pumped Sb-based VECSEL emitting around 2.1 μm[J]. Electronics Letters, 2003, 39(3): 290-292.

【17】Hopkins J M, Hempler N, Rosener B, et al. High-power,(AlGaIn)(AsSb) semiconductor disk laser at 2.0 μm[J]. Optics Letters, 2008, 33(2): 201-203.

【18】Paajaste J, Suomalainen S, Koskinen R, et al. High-power and broadly tunable GaSb-based optically pumped VECSELs emitting near 2 μm[J]. Journal of Crystal Growth, 2009, 311(7): 1917-1919.

【19】Holl P, Rattunde M, Adler S, et al. GaSb-based 2.0 μm SDL with 17 W output power at 20°C[J]. Electronics Letters, 2016, 52(21): 1794-1795.

【20】Cerutti L, Garnache A, Ouvrard A, et al. High temperature continuous wave operation of Sb-based vertical external cavity surface emitting laser near 2.3 μm[J]. Journal of Crystal Growth, 2004, 268(1-2): 128-134.

【21】Cerutti L, Garnache A, Ouvrard A, et al. 2.36 μm diode pumped VCSEL operating at room temperature in continuous wave with circular TEM 00, output beam[J]. Electronics Letters, 2004, 40(14): 869-871.

【22】Rattunde M, Schulz N, Rosener B, et al. High brightness GaSb-based optically pumped semiconductor disk lasers at 2.3 μm[C]//SPIE , 2007, 6479: 647915.

【23】Rosener B, Rattunde M, Moser R, et al. GaSb-based optically pumped semiconductor disk laser using multiple gain elements[J]. IEEE Photonics Technology Letters, 2009, 21(13): 848-850.

【24】Paajaste J, Koskinen R, Nikkinen J, et al. Power scalable 2.5 μm (AlGaIn)(AsSb) semiconductor disk laser grown by molecular beam epitaxy[J]. Journal of Crystal Growth, 2011, 323(1): 454-456.

【25】Holl P, Rattunde M, Wagner J. Optimization of 2.5 μm VECSEL: influence of the QW active region[C]//SPIE, 2016, 97340: 97340S.

【26】Rosener B, Rattunde M, Moser R, et al. Continuous-wave room-temperature operation of a 2.8 μm GaSb-based semiconductor disk laser[J]. Optics Letters, 2011, 36(3): 319-321.

【27】Holl P, Rattunde M, Adler S, et al. GaSb-based VECSEL for high-power applications and Ho-pumping[C]//SPIE, 2017, 10087: 1008705.

【28】Holms M A, Burns D, Ferguson A I, et al. Actively stabilized single-frequency vertical- external-cavity AlGaAs laser[J]. Photonics Technology Letters IEEE, 1999, 11(12): 1551-1553.

【29】Cerutti L, Garnache A, Ouvrard A, et al. Vertical cavity surface emitting laser sources for gas detection[J]. Physica Status Solidi, 2005, 202(4): 631-635.

【30】Hopkins J M, Maclean A J, Burns D, et al. Tunable, single-frequency, diode-pumped 2.3 μm VECSEL[C]// Lasers and Electro-Optics, and Quantum Electronics, 2008, 15(13): 1-2.

【31】Kaspar S, Rosener B, Rattunde M, et al. Sub-MHz-linewidth 200 mW actively stabilized 2.3 μm semiconductor disk laser[J]. IEEE Photonics Technology Letters, 2011, 23(20): 1538-1540.

【32】Rosener B, Kaspar S, Rattunde M, et al. 2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz[J]. Optics Letters, 2011, 36(18): 3587-3589.

【33】Kaspar S, Rattunde M, Topper T, et al. Semiconductor disk laser at 2.05 μm wavelength with <100 kHz linewidth at 1 W output power[J]. Applied Physics Letters, 2012, 100(3): 407-415.

【34】Kaspar S, Rattunde M, Topper T, et al. Linewidth narrowing and power scaling of single-frequency 2.X μm GaSb-based semiconductor disk lasers[J]. IEEE Journal of Quantum Electronics, 2013, 49(3): 314-324.

【35】Price J H V, Monro T M, Ebendorff-Heidepriem H, et al. Mid-IR supercontinuum generation from nonsilica microstructured optical fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 738-749.

【36】Yarborough J M, Lai Y Y, Kaneda Y, et al. Record pulsed power demonstration of a 2 μm GaSb-based optically pumped semiconductor laser grown lattice-mismatched on an AlAs/GaAs Bragg mirror and substrate[J]. Applied Physics Letters, 2009, 95(8): 645109.

【37】Lai Y Y, Yarborough J M, Kaneda Y, et al. 340 W peak power from a GaSb 2 μm optically pumped semiconductor laser(OPSL) grown mismatched on GaAs[J]. IEEE Photonics Technology Letters, 2010, 22(16): 1253-1255.

【38】Harkonen A, Paajaste J, Suomalainen S, et al. Picosecond passively mode-locked GaSb-based semiconductor disk laser operating at 2 μm[J]. Optics Letters, 2010, 35(24): 4090-4092.

【39】Harkonen A, Grebing C, Paajaste J, et al. Mode-locked GaSb disk laser producing 384 fs pulses at 2 μm wavelength[J]. Electronics Letters, 2011, 47(7): 454-456.

【40】Kaspar S, Rattunde M, Topper T, et al. Electro-optically cavity dumped 2 μm semiconductor disk laser emitting 3 ns pulses of 30 W peak power[J]. Applied Physics Letters, 2012, 101(14): 1063-1087.

【41】Schulz N, Rattunde M, Wagner J, et al. GaSb-based VECSELs emitting at around 2.35 μm employing different optical pumping concepts[C]//Photonics Europe, 2006: 6184.

【42】Schulz N, Rattunde M, Ritzenthaler C, et al. Resonant optical in-well pumping of an (AlGaIn)(AsSb)-based vertical-external-cavity surface-emitting laser emitting at 2.35 μm[J]. Applied Physics Letters, 2007, 91(9):1063-1069.

【43】Holl P, Rattunde M, Adler S, et al. Recent advances in power scaling of GaSb-based semiconductor disk lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 324-335.

【44】Perez J P, Laurain A, Cerutti L, et al. Technologies for thermal management of mid-IR Sb-based surface emitting lasers[J]. Semiconductor Science & Technology, 2017, 25(4): 045021.

【45】Devautour M, Michon A, Beaudoin G, et al. Thermal management for high-power single-frequency tunable diode-pumped VECSEL emitting in the near- and mid-IR[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701108.

【46】Liau Z L. Semiconductor wafer bonding via liquid capillarity[J]. Applied Physics Letters, 2000, 77(5): 651-653.

【47】Kaspar S, Rattunde M, Schilling C, et al. Micro-cavity 2 μm GaSb-based semiconductor disk laser using high-reflectivity SiC heatspreader[J]. Applied Physics Letters, 2013, 103(4): 041117.

引用该论文

Shang Jinming,Zhang Yu,Yang Cheng′ao,Xie Shengwen,Huang Shushan,Yuan Ye,Zhang Yi,Shao Fuhui,Xu Yingqiang,Niu Zhichuan. Research progress of GaSb based optically pumped semiconductor disk lasers(invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003004

尚金铭,张 宇,杨成奥,谢圣文,黄书山,袁 野,张 一,邵福会,徐应强,牛智川. GaSb基光泵浦半导体碟片激光器的研究进展(特邀)[J]. 红外与激光工程, 2018, 47(10): 1003004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF