首页 > 论文 > 光学学报 > 38卷 > 12期(pp:1205001--1)

波导布拉格光栅时延响应谱的通解

General Solution to Delay-Response Spectra of Waveguide Bragg Gratings

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用波导布拉格光栅(WBG)微扰的傅里叶变换和流守恒定律求解耦合模方程,得到WBG相位响应的解析解。通过对该相位响应的解析解进行微分,建立了WBG时延谱的半解析型通解。基于该时延谱通解,仿真分析了均匀和线性啁啾WBG的时延谱,并与用其他方法得到的时延谱及其实测谱进行对比分析,以验证时延谱通解的分析精度和效率。对比结果表明,基于该时延谱通解的分析结果在整个反射带内与用其他方法得到的时延谱计算值及实测值一致。该时延谱通解可用于快速、精确分析任意复杂WBG的时延谱,对有解析型和离散型傅里叶变换的WBG分别具有O(N),O(N1b N)的线性复杂度(N是计算点数)。该方法可为分析、设计和应用WBG的相位和时延特性提供通用的基础理论和解析化方法。

Abstract

The study gets a closed form of the phase-response of a waveguide Bragg grating (WBG) by solving its coupled-mode equation with the Fourier transform (FT) of its index perturbation and the law of flux conservation, and then establishes the semi-analytic general solution of its delay spectrum by differentiating the phase response. Based on this delay general solution, the delay spectra of uniform and linearly-chirped WBGs are simulated, which are compared with those delay spectra obtained by other methods and the measured spectra in order to verify the analysis precision and efficiency of delay general solution. The comparison results show that the delay spectra calculated with this general solution agree well with those measured or calculated by other methods in the whole reflection band. Moreover, this general solution can be employed for the fast and exact analysis of arbitrarily complicated delay spectra of WBGs. The WBGs with analytic FT and discrete FT possess the linear complexities of O(N), and O(Nlb N)(N is the number of calculation points), respectively. This method may provide a universal basic theory and an analytic method for the analysis, design, and application of the delay properties and phases of WBGs.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O438.2

DOI:10.3788/aos201838.1205001

所属栏目:衍射与光栅

基金项目:国家自然科学基金(61575035)、重庆市教委科学技术研究项目(KJ1500924)

收稿日期:2018-06-12

修改稿日期:2018-07-16

网络出版日期:2018-07-31

作者单位    点击查看

曾祥楷:重庆理工大学电气与电子工程学院, 重庆 400054
孙燕斌:重庆工程学院电子信息学院, 重庆 400056

联系人作者:曾祥楷(zxkai@cqut.edu.cn); 孙燕斌(icandobetter@sina.com);

【1】Rebola J L, Cartaxo A V T. Performance optimization of Gaussian apodized fiber Bragg grating filters in WDM systems[J]. Journal of Lightwave Technology, 2002, 20(8): 1537-1544.

【2】Zhang W F, Yao J P. A fully reconfigurable waveguide Bragg grating for programmable photonic signal processing[J]. Nature Communications, 2018, 9(1): 1396.

【3】Ma T, Nallapan K, Guerboukha H, et al. Analog signal processing in the terahertz communication links using waveguide Bragg gratings: example of dispersion compensation[J]. Optics Express, 2017, 25(10): 11009-11026.

【4】Dogru N. Effect of grating parameters on mode-locked external cavity lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 644-652.

【5】Jiang L Y, Wang L H, Lin Z X, et al. Effect of optical feedback on characteristic of the fiber grating external cavity semiconductor laser[J]. Chinese Journal of Lasers, 2016, 43(7): 0701008.
江璐芸, 王凌华, 林中晞, 等. 光反馈对光纤光栅外腔半导体激光器特性的影响[J]. 中国激光, 2016, 43(7): 0701008.

【6】Koo K P, LeBlanc M, Tsai T E, et al. Fiber-chirped grating Fabry-Pérot sensor with multiple-wavelength-addressable free-spectral ranges[J]. IEEE Photonics Technology Letters, 1998, 10(7): 1006-1008.

【7】Sun J J, Wang Z F, Wang M, et al. Temperature tuning properties of π phase-shifted fiber Bragg gratings[J]. Acta Optica Sinica, 2017, 37(10): 1006004.
孙俊杰, 王泽锋, 王蒙, 等. 相移光纤光栅的温度调谐特性[J]. 光学学报, 2017, 37(10): 1006004.

【8】Derevyanko S. Design of a flat-top fiber Bragg filter via quasi-random modulation of the refractive index[J]. Optics Letters, 2008, 33(20): 2404-2406.

【9】Lee M H, Jo J Y, Kim D W, et al. Comparative study of uniform and nonuniform grating couplers for optimized fiber coupling to silicon waveguides[J]. Journal of the Optical Society of Korea, 2016, 20(2): 291-299.

【10】Williams R J, Voigtlnder C, Marshall G D, et al. Point-by-point inscription of apodized fiber Bragg gratings[J]. Optics Letters, 2011, 36(15): 2988-2990.

【11】Frankinas S, Michailovas A, Rusteika N, et al. Efficient ultrafast fiber laser using chirped fiber Bragg grating and chirped volume Bragg grating stretcher/compressor configuration[J]. Proceedings of SPIE, 2016, 9730: 973017.

【12】Liu W K, Liu C Y, Dong X W. Ultrashort optical pulse shaping based on integral characteristics of phase-shifted fiber grating[J]. Chinese Journal of Lasers, 2018, 45(3): 0306005.
刘文楷, 刘成园, 董小伟. 基于相移光纤光栅积分特性的超短光脉冲整形[J]. 中国激光, 2018, 45(3): 0306005.

【13】Song M. Programmable correction of fiber Bragg grating delay ripple for RF photonic filtering[J]. IEEE Photonics Technology Letters, 2016, 28(12): 1321-1324.

【14】Skolianos G, Arora A, Bernier M, et al. Slow light in fiber Bragg gratings and its applications[J]. Journal of Physics D: Applied Physics, 2016, 49(46): 463001.

【15】Wang Q, Wang P, Du C, et al. Theoretical investigation and optimization of fiber grating based slow light[J]. Optics Communications, 2017, 395: 201-206.

【16】Pei L, Wu L Y, Wang J S, et al. Phase shift chirped fiber Bragg grating based distributed strain and position sensing[J]. Acta Physica Sinica, 2017, 66(7): 070702.
裴丽, 吴良英, 王建帅, 等. 啁啾相移光纤光栅分布式应变与应变点精确定位传感研究[J]. 物理学报, 2017, 66(7): 070702.

【17】Qu L, Meng Y, Zhuo Z C, et al. Study on delay and dispersion characteristics of the fiber Bragg grating Fabry-Perot cavity[J]. Acta Optica Sinica, 2013, 33(8): 0806001.
屈丽, 孟瑜, 卓仲畅, 等. 光纤布拉格光栅法布里-珀罗腔时延和色散特性的研究[J]. 光学学报, 2013, 33(8): 0806001.

【18】Xu C, Ban D Y. Design of chirped distributed Bragg reflector for octave-spanning frequency group velocity dispersion compensation in terahertz quantum cascade laser[J]. Optics Express, 2016, 24(12): 13500-13510.

【19】Wang K R, Cheng J L, Chen G, et al. Research on time-delay characteristics of solitons in fiber Bragg grating[J]. Acta Optica Sinica, 2011, 31(2): 0219001.
王葵如, 程洁琳, 陈功, 等. 光纤光栅中孤子时延特性研究[J]. 光学学报, 2011, 31(2): 0219001.

【20】Shu X W. Optical fiber gratings and their applications in photonics information technology[D]. Wuhan: Huazhong University of Science and Technology, 2000: 44-134.
舒学文. 光纤光栅及其在光子信息技术中的应用[D]. 武汉: 华中理工大学, 2000: 44-134.

【21】Erdogan T. Fiber grating spectra[J]. Journal of Lightwave Technology, 1997, 15(8): 1277-1294.

【22】Chen Y L, Xu J, Shi N N, et al. Mode properties of metal-insulator-metal waveguide Bragg grating[J]. Acta Optica Sinica, 2017, 37(11): 1123002.
陈奕霖, 许吉, 时楠楠, 等. 金属-介质-金属波导布拉格光栅的模式特性[J]. 光学学报, 2017, 37(11): 1123002.

【23】Qi J F, Zhong Z Q, Wang G N, et al. Characteristics of chaotic output from a Gaussian apodized fiber Bragg grating external-cavity semiconductor laser[J]. Acta Physica Sinica, 2017, 66(24): 244207.
起俊丰, 钟祝强, 王广娜, 等. 高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性[J]. 物理学报, 2017, 66(24): 244207.

【24】Zeng X K, Liang K. Analytic solutions for spectral properties of superstructure, Gaussian-apodized and phase shift gratings with short- or long-period[J]. Optics Express, 2011, 19(23): 22797-22808.

【25】Armstrong J A, Bloembergen N, Ducuing J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939.

引用该论文

Zeng Xiangkai,Sun Yanbin. General Solution to Delay-Response Spectra of Waveguide Bragg Gratings[J]. Acta Optica Sinica, 2018, 38(12): 1205001

曾祥楷,孙燕斌. 波导布拉格光栅时延响应谱的通解[J]. 光学学报, 2018, 38(12): 1205001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF