Chinese Optics Letters, 2018, 16 (12): 121901, Published Online: Dec. 7, 2018  

Analysis and evaluation of idler absorption for quasi-parametric chirped-pulse amplification Download: 642次

Author Affiliations
1 Shanghai Engineering Research Center of Ultra-precision Optical Manufacturing, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
2 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
3 Key Laboratory for Laser Plasmas (Ministry of Education), Collaborative Innovation Center of IFSA (CICIFSA), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract
Quasi-parametric chirped-pulse amplification (QPCPA) can improve the signal amplification efficiency and stability by inhibiting the back-conversion, in which the idler absorption plays a critical role. This Letter theoretically studies the impacts of idler absorption on the QPCPA performance in both the small-signal and saturation regimes. We demonstrate that there exists an optimal idler absorption that enables the achievement of maximum pump depletion within a minimum crystal length. To overcome the reduction in small-signal gain induced by idler absorption, the configuration of gradient idler absorption is proposed and demonstrated as a superior alternative to constant idler absorption. The results provide guidelines to the design of state-of-the-art QPCPA lasers.

Dongxia Hu, Yudong Tao, Jingui Ma, Jing Wang, Heyuan Zhu, Liejia Qian. Analysis and evaluation of idler absorption for quasi-parametric chirped-pulse amplification[J]. Chinese Optics Letters, 2018, 16(12): 121901.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!