激光与光电子学进展, 2018, 55 (12): 121601, 网络出版: 2019-08-01   

基于三维耦合的多波段宽带电磁诱导透明分析 下载: 1132次

Analysis of Multiband and Broadband Electromagnetically Induced Transparency Based on Three-Dimensional Coupling
作者单位
北京交通大学光波技术研究所全光网络与现代通信网教育部重点实验室, 北京 100044
摘要
设计了一种平面-立式相结合且能够通过三维耦合方式实现多波段宽带电磁诱导透明效应的超材料。通过3个立式开口环与平面闭合方环相互耦合,该超材料结构实现了0.68 THz与1.09 THz双波段的电磁诱导透明现象,带宽分别可达0.38 THz与0.74 THz。通过拆分表面金属结构并相互对比,分别研究了该超材料结构实现多波段与宽带电磁诱导透明效应的机理,同时分析了3个开口环的间距、臂长对电磁诱导透明强度与带宽的影响。仿真分析表明:该超材料结构能够于太赫兹波段实现多频点高强度的慢光效应,并具有较高的折射率灵敏度,在光缓存器件与折射率传感领域有一定的应用价值。
Abstract
In this paper, a planar and vertical combination of metamaterial that can realize the multiband and broadband electromagnetically induced transparency effect by three-dimensional coupling is designed. Through the coupling of three vertical split ring resonators(SRRs) and one planar square closed loop(SCL), the electromagnetically induced transparency of the metamaterial is realized at 0.68 THz and 1.09 THz. The bandwidth can reach 0.38 THz and 0.74 THz, respectively. By comparing and splitting the structures, the physical mechanism of electromagnetically inducing transparency through multiband and broadband is studied. Besides, the influences of the distance between the three SRRs and their arm-lengths on the intensity and bandwidth of the electromagnetically induced transparency are analyzed. The simulation show that the structure of metamaterial can achieve slow light effect with high intensity at multiple frequency points and high refractive index sensitivity in terahertz range. It has some application value in the field of optical buffer devices and refractive index sensing.

李广森, 延凤平, 王伟, 乔楠. 基于三维耦合的多波段宽带电磁诱导透明分析[J]. 激光与光电子学进展, 2018, 55(12): 121601. Guangsen Li, Fengping Yan, Wei Wang, Nan Qiao. Analysis of Multiband and Broadband Electromagnetically Induced Transparency Based on Three-Dimensional Coupling[J]. Laser & Optoelectronics Progress, 2018, 55(12): 121601.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!