光子学报, 2018, 47 (11): 1116001, 网络出版: 2018-12-17   

基于全介质超表面的电磁诱导透明研究

Electromagnetic Induced Transparency Based on All-dielectric Metasurface
作者单位
1 湖北第二师范学院 物理与机电工程学院, 武汉 430205
2 华中师范大学 物理科学与技术学院, 武汉 430079
摘要
设计了一种基于TiO2介质的全介质电磁诱导透明超表面模型, 该结构由两根十字垂直交叉的介质棒和四个介质方块组成.在入射电磁场的作用下, 介质棒中直接被入射电磁场激励的米氏电谐振通过相互耦合作用激发了介质方块中的磁共振, 并产生谐振模之间的相消干涉, 从而产生了类电磁诱导透明现象.利用电磁仿真软件和双谐振子耦合模理论, 模拟计算和定量分析了类电磁诱导透明效应, 结果表明: 在电磁波正入射下, 该结构在0.552 THz处产生一透射率接近96%的透明窗口.由于其结构单元具有4度旋转对称性和多个暗模谐振元素, 使得诱导透明效应出现较宽频带且呈现出对入射电场极化方向不敏感的特性.
Abstract
Classical analogy of electromagnetically induced transparency-like effect was demonstrated by a all-dielectric metasurface structure based on TiO2, which composed of two cross perpendicular dielectric bars and four dielectric bricks. Under the excitation of incident electromagnetic field, electric Mie resonance, which is directly excited by the incident electromagnetic field in the dielectric bar, can excite the magnetic Mie resonance in the dielectric bricks by the interaction of each other, and then produce the destructive interference between the resonant modes, thus the phenomenon of electromagnetic induced transparency occurs. By using the simulation software and the "two oscillators" coupled model, the simulation calculation and quantitative analysis of the electromagnetic induced transparency effect were both carried out. Results show that a transparent window with a transmittance of nearly 96% is generated at 0.552 THz under the normal incidence of electromagnetic wave. Owing to its C4 rotation symmetric and multiple dark mode resonant elements of the proposed structure, the induced transparency effect is characterized by a broadband transparency window and insensitive to the incident electric field polarization.

胡森, 刘丹, 杨河林. 基于全介质超表面的电磁诱导透明研究[J]. 光子学报, 2018, 47(11): 1116001. HU Sen, LIU Dan1, YANG He-lin. Electromagnetic Induced Transparency Based on All-dielectric Metasurface[J]. ACTA PHOTONICA SINICA, 2018, 47(11): 1116001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!