首页 > 论文 > Matter and Radiation at Extremes > 3卷 > 5期(pp:248-255)

Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum

Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Radiation uniformity is important for Z-pinch dynamic hohlraum driven fusion. In order to understand the radiation uniformity of Z-pinch dynamic hohlraum, the code MULTI-2D with a new developed magnetic field package is employed to investigate the related physical processes on Julong-I facility with drive current about 7e8 MA. Numerical simulations suggest that Z-pinch dynamic hohlraum with radiation temperature more than 100 eV can be created on Julong-I facility. Although some X-rays can escape out of the hohlraum from Z-pinch plasma and electrodes, the radiation field near the foam center is quite uniform after a transition time. For the load parameters used in this paper, the transition time for the thermal wave transports from r = 1 mm to r = 0 mm is about 2.0 ns. Implosion of a testing pellet driven by cylindrical dynamic hohlraum shows that symmetrical implosion is hard to achieve due to the relatively slow propagation speed of thermal wave and the compression of cylindrical shock in the foam. With the help of quasi-spherical implosion, the hohlraum radiation uniformity and corresponding pellet implosion symmetry can be significantly improved thanks to the shape modulation of thermal wave front and shock wave front.

Newport宣传-MKS新实验室计划
补充资料

基金项目:This work was supported by the National Natural Science Foundation of China (Nos. 11374357, 11475153, 11705282, and 11475260), Science Challenge Project (No.TZ2018001), Research Project of NUDT (Grant No. ZK16-03-29), the Spanish Ministerio de Economia y Competivida project (No. ENE2014-54960-R), and the EUROfusion Consortium project AWP15-ENR-01/CEA-02.

收稿日期:2017-10-11

修改稿日期:2018-05-06

网络出版日期:--

作者单位    点击查看

Fuyuan Wu:College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, ChinaInstitute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, ChinaE.T.S.I. Aeronauticos y del Espacio, Universidad Politecnica de Madrid, Madrid, 28040, Spain
Yanyun Chu:Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
Rafael Ramis:E.T.S.I. Aeronauticos y del Espacio, Universidad Politecnica de Madrid, Madrid, 28040, Spain
Zhenghong Li:Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
Yanyun Ma:College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, ChinaIFSA Collaborative Innovation Center, Shanghai Jiao Tong Univeristy, Shanghai, 200240, China
Jianlun Yang:Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
Zhen Wang:Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
Fan Ye:Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
Zhanchang Huang:Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
Jianmin Qi:Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
Lin Zhou:Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
Chuan Liang:Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China
Shijia Chen:College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, China
Zheyi Ge:College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, China
Xiaohu Yang:College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, China
Shangwu Wang:College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, 410073, China

联系人作者:Z. Li(lee_march@sina.com)

【1】J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Phys. Plasmas 11 (2004) 339-491.

【2】Ke Lan, Jiu Liu, Zhichao Li, Xufei Xie, Wenyi Huo, et al., Progress in octahedral spherical hohlraum study, Matter. Radiat. Extrem. 1 (2016)8-27.

【3】S. Kawata, T. Karino, A.I. Ogoyski, Review of heavy-ion inertial fusion physics, Matter. Radiat. Extrem. 1 (2016) 89-113.

【4】C. Olson, G. Rochau, S. Slutz, C. Morrow, R. Olson, et al., Development path for Z-pinch IFE, Fusion Sci. Technol. 47 (2005) 633-640.

【5】R.B. Spielman, C. Deeney, G.A. Chandler, M.R. Douglas, D.L. Fehl, et al., Tungsten wire-array Z-pinch experiments at 200 TWand 2 MJ, Phys. Plasmas 5 (1998) 2105-2111.

【6】C.L. Ruiz, G.W. Cooper, S.A. Slutz, J.E. Bailey, G.A. Chandler, et al., Production of thermonuclear neutrons from deuterium-filled capsule implosions driven by Z-pinch dynamic hohlraums, Phys. Rev. Lett. 93(2004) 015001.

【7】G.A. Rochau, J.E. Bailey, G.A. Chandler, G. Cooper, G.S. Dunham, et al., High performance capsule implosions driven by the Z-pinch dynamic hohlraum, Plasma Phys. Contr. Fusion 49 (2007) B591.

【8】W.A. Stygar, T.J. Awe, J.E. Bailey, N.L. Bennett, E.W. Breden, et al., Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments, Phys. Rev. ST Accel. Beams 18 (2015) 110401.

【9】R.W. Lemke, J.E. Bailey, G.A. Chandler, T.J. Nash, S.A. Slutz, et al., Amplitude reduction of nonuniformities induced by magnetic RayleigheTaylor instabilities in Z-pinch dynamic hohlraums, Phys. Plasmas 12 (2005) 012703.

【10】S.A. Slutz, K.J. Peterson, R.A. Vesey, R.W. Lemke, J.E. Bailey, et al., Integrated two-dimensional simulations of dynamic hohlraum driven inertial fusion capsule implosions, Phys. Plasmas 13 (2006) 102701.

【11】Jianjun Deng, Weiping Xie, Shuping Feng, Meng Wang, Hongtao Li, et al., From concept to realitydA review to the primary test stand and its preliminary application in high energy density physics, Matter. Radiat. Extrem. 1 (2016) 48-58.

【12】Delong Xiao, Shunkai Sun, Chuang Xue, Yang Zhang, Ning Ding, Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation, Acta Phys. Sin. 64 (2015) 235203.

【13】Ning Ding, Yang Zhang, Delong Xiao, Jiming Wu, Zihuan Dai, et al., Theoretical and numerical research of wire array Z-pinch and dynamic hohlraum at IAPCM, Matter. Radiat. Extrem. 1 (2016) 135-152.

【14】Xianbin Huang, Xiaodong Ren, Jiakun Dan, Kunlun Wang, Qiang Xu, et al., Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility, Phys. Plasmas 24 (2017) 092704.

【15】Shijian Meng, Qingyuan Hu, Jiaming Ning, Fan Ye, Zhanchang Huang, et al., Measurement of axial radiation properties in Z-pinch dynamic hohlraum at Julong-1, Phys. Plasmas 24 (2017) 014505.

【16】Fuyuan Wu, Rafael Ramis, Zhenghong Li, Yanyun Chu, Jianlun Yang, Numerical simulation of the interaction between Z-pinch plasma and foam converter using code MULTI, Fusion Sci. Technol. (2017), https://doi.org/10.1080/15361055.2017.1347458.

【17】R. Ramis, J. Meyer-ter-Vehn, J. Ramírez, MULTI2Dda computer code for two-dimensional radiation hydrodynamics, Comput. Phys. Commun. 180 (2009) 977-994.

【18】Fuyuan Wu, Rafael Ramis, Zhenghong Li, A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations, J. Comput. Phys. (2017), https://doi.org/10.1016/j.jcp.2017.12.014.

【19】S.A. Slutz, M.R. Douglas, J.S. Lash, R.A. Vesey, G.A. Chandler, et al., Scaling and optimization of the radiation temperature in dynamic hohlraums, Phys. Plasmas 8 (2001) 1673-1691.

【20】T.J. Nash, D.H. McDaniel, R.J. Leeper, C.D. Deeney, T.W.L. Sanford, Design, simulation, and application of quasi-spherical 100 ns Z-pinch implosions driven by tens of mega-amperes, Phys. Plasmas 12 (2005) 052705.

【21】V.P. Smirnov, S.V. Zakharov, E.V. Grabovski, Increase in radiation intensity in a quasi-spherical double liner/dynamic hohlraum system, JETP Lett. 81 (2005) 442-447.

【22】E.V. Grabovskii, A.N. Gritsuk, V.P. Smirnov, V.V. Aleksandrov, G.M. Oleinik, et al., Current implosion of quasi-spherical wire arrays, JETP Lett. 89 (2009) 315-318.

【23】Yanyun Chu, Zhenghong Li, Jianlun Yang, Ning Ding, Rongkun Xu, et al., Simulation of the quasi-spherical wire-array implosion dynamics based on a multi-element model, Plasma Phys. Contr. Fusion 54 (2012) 105020.

【24】Yang Zhang, Ning Ding, Zhenghong Li, Rongkun Xu, Dingyang Chen, et al., Realization of quasi-spherical implosion using pre-shaped prolate wire arrays with a compression foam target inside, Phys. Plasmas 22 (2015) 020703.

【25】R. Ramis, J. Meyer-ter-Vehn, MULTI-IFEdA one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations, Comput. Phys. Commun. 203 (2016) 226-237.

【26】Fuyuan Wu, Yanyun Chu, Fan Ye, Zhenghong Li, Jianlun Yang, Onedimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI, Acta Phys. Sin. 66 (2017) 215201.

【27】T.W.L. Sanford, G.O. Allshouse, B.M. Marder, T.J. Nash, R.C. Mock, et al., Improved symmetry greatly increases X-ray power from wire-array Z-pinches, Phys. Rev. Lett. 77 (1996) 5063.

【28】S.V. Lebedev, F.N. Beg, S.N. Bland, J.P. Chittenden, A.E. Dangor, et al., Snowplow-like behavior in the implosion phase of wire array Z pinches, Phys. Plasmas 9 (2002) 2293.

【29】A.A. Esaulov, V.L. Kantsyrev, A.S. Safronova, A.L. Velikovich, I.K. Shrestha, et al., Wire ablation dynamics model and its application to imploding wire arrays of different geometries, Phys. Rev. E 86 (2012) 046404.

【30】K. Lan, Y. Zhang, Theoretical studies of aluminum wire array Z-pinch implosions with varying masses and radii, Eur. Phys. J. Appl. Phys. 19 (2002) 103.

【31】J.E. Bailey, G.A. Chandler, S.A. Slutz, G.R. Bennett, G. Cooper, et al., X-ray imaging measurements of capsule implosions driven by a Z-pinch dynamic hohlraum, Phys. Rev. Lett. 89 (2002) 095004.

【32】Delong Xiao, Shunkai Sun, Yingkui Zhao, Ning Ding, Jiming Wu, et al., Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums, Phys. Plasmas 22 (2015) 052709.

【33】T.J. Nash, M.S. Derzon, G.A. Chandler, R. Leeper, D. Fehl, et al., Hightemperature dynamic hohlraums on the pulsed power driver Z, Phys. Plasmas 6 (1999) 2023-2029.

引用该论文

Fuyuan Wu,Yanyun Chu,Rafael Ramis,Zhenghong Li,Yanyun Ma,Jianlun Yang,Zhen Wang,Fan Ye,Zhanchang Huang,Jianmin Qi,Lin Zhou,Chuan Liang,Shijia Chen,Zheyi Ge,Xiaohu Yang,Shangwu Wang. Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2018, 3(5): 248-255

Fuyuan Wu,Yanyun Chu,Rafael Ramis,Zhenghong Li,Yanyun Ma,Jianlun Yang,Zhen Wang,Fan Ye,Zhanchang Huang,Jianmin Qi,Lin Zhou,Chuan Liang,Shijia Chen,Zheyi Ge,Xiaohu Yang,Shangwu Wang. Numerical studies on the radiation uniformity of Z-pinch dynamic hohlraum[J]. Matter and Radiation at Extremes, 2018, 3(5): 248-255

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF