首页 > 论文 > 红外与激光工程 > 47卷 > 11期(pp:1105009--1)

定向红外对抗系统中的激光器技术

Laser technology for direct IR countermeasure system

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

便携式防空系统 (MANPADs)、各类红外制导导弹等红外热寻的武器是民用、军用飞机重要的威胁。随着红外成像探测器被广泛用于热寻的制导武器,传统的红外干扰机、曳光弹难以形成有效对抗, 以红外波段激光作为光源的红外定向对抗(DIRCM)系统是目前对抗热寻的武器的有效手段。文中回顾了目前有代表性的红外定向对抗系统, 分析阐述用于红外定向对抗系统中的激光器关键技术, 给出红外成像探器致眩区域计算方法, 并讨论展望红外对抗激光器技术的发展趋势。

Abstract

Heat seeking weapons such as man-portable air defense system (MANPADs), various IR guiding missile are the main threaten for civil aircraft and military aircraft. As the appearance of IR imaging seeker, the effect of traditional IR interference equipment and infrared flares are limited. Otherwise, direct IR countermeasure (DIRCM) system has been effective means. In this paper, the international research on DIRCM and key techniques for laser of DIRCM was reviewed. Furthermore, calculating method for dazzling area of imaging detector was given. At the same time, the research trends of DIRCM and laser of DIRCM were forecasted in the future.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:V271;TN21

DOI:10.3788/irla201847.1105009

所属栏目:激光器技术

基金项目:国家重点研发计划(2017YFB1104500)

收稿日期:2018-06-10

修改稿日期:2018-07-28

网络出版日期:--

作者单位    点击查看

孟冬冬:中国科学院光电研究院,北京 100094中国科学院大学, 北京100049
张鸿博:中国科学院光电研究院,北京 100094
李明山:中国科学院光电研究院,北京 100094
林蔚然:中国科学院光电研究院,北京 100094
沈兆国:洛阳电光设备研究所, 洛阳 471000
张 杰:洛阳电光设备研究所, 洛阳 471000
樊仲维:中国科学院光电研究院,北京 100094

联系人作者:孟冬冬(mjf09@163.com)

备注:孟冬冬(1979-), 男, 高级工程师, 硕士, 主要从事光电技术、激光技术方面的研究。

【1】Abramov P I, Kuznetsovand E V, Kvortsov L A. Prospects of using quantum-cascade lasers in optoelectronic countermeasure systems: review[J]. Journal of Optical Technology, 2017, 84: 331.

【2】Fan Jinxiang, Li Liang, Li Wenjun. Development of direct infrared countermeasure system and technology[J]. Infrared and Laser Engineering, 2015, 44(S3): 789-794. (in Chinese)
范晋祥, 李亮, 李文军. 定向红外对抗系统与技术的发展[J]. 红外与激光工程, 2015, 44(S3): 789-794.

【3】Northrop Grumman, Electronics Systems, Directional Infrared Countermeasures(DIRCM) Gallery.[2018-05-04]. http: //www.es.northropgrumman.com/solutions/nemesis/gallery.html

【4】Northrop Grumman, Electronics Systems, Directional Infrared Countermeasures(DIRCM) Gallery.[2018-03-02]. http: //www.es.northropgrumman.com/solutions/nemesis/gallery.html.

【5】Zhang Yuansheng, Xu Liang, Chen Fang, et al. Mid-infrared lasers used in airborne directed infrared countermeasures system and its key technologies[J]. Electronics Optics & Control, 2017, 24(5): 56-59. (in Chinese)
张元生, 徐亮, 陈方, 等, 机载定向红外对抗系统的中波红外激光器及关键技术[J]. 电光与控制, 2017, 24(5): 56-59.

【6】Schleijipen R M A, Heuvel J C, Mieremet AL, et al. Laser dazzling of focal plane array cameras[C]//Proc SPIE, 2007, 6738: 67380O.

【7】Schleijipen R M A, Heuvel J C, Mieremet A L, et al. Laser dazzling of focal-plane-array cameras[C]//Proc SPIE, 2007, 6543: 65431B.

【8】Andrew Sijan, Development of military lasers for optical countermeasures in The mid-IR[C]//Proc SPIE Technologies for Optical Countermeasures VI, 2009, 7483: 748304.

【9】Ian Elder. Performance requirements for countermeasures lasers[C]//Proc SPIE Technologies for Optical Countermeasures VII, 2010, 7836: 783605.

【10】Cornelius J Willers, Maria S Willers. Simulating the DIRCM engagement component and system level performance[C]//Proc SPIE, 2012, 8543: 85430M.

【11】Li Lijuan, Bai Xiaodong, Liu Ke. Analysis of the key technologies for dual color IR imaging guidance of air-to-air missile[J]. Laser & Infrared, 2013, 43(9): 1036-1039. (in Chinese)
李丽娟, 白晓东, 刘珂. 空空导弹双色红外成像制导关键技术分析[J]. 激光与红外, 2013, 43(9): 1036-1039.

【12】Lippert E, Fonnum H, Stenersen K. High power multi-wavelength infrared source; proceedings of the Security+ Defence, F[C]// International Society for Optics and Photonics, 2010.

【13】Martin Schellhorn, Gerhard Spindler, Marc Eichhorn. Improvement of the beam quality of a high-pulse-energy mid-infrared fractionalimage-rotation-enhancement ZnGeP2 optical parametric oscillator[J]. Opt Lett, 2017, 42: 1185.

【14】Wagner J, Hugger S, R 觟sener B, et al. Infrared semiconductor laser modules for DIRCM applications[C]//Proc SPIE Technologies for Optical Countermeasures VI, 2009, 7483: 74830F.

【15】Tauke-Pedretti A. Power sharing in dual-wavelength optically pumped midinfrared laser[J]. IEEE Photonics Technology Letters, 2009, 21(14): 1011-1013.

【16】Hopkins J M. High-power(AlGaIn)(AsSb) semiconductor disk laser at 2.0 μm[J]. Optics Letters, 2008, 33(2): 201-203.

【17】Kazarinov R F, Suris R A. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice[J]. Sov Phys Semicond, 1971, 5(4): 707-709.

【18】Jerome Faist, Federico Capasso, Sivco D L, et al. Quantum cascade laser[J]. Science, 1994, 264: 553-556.

【19】Mattias Beck, Daniel Hofstetter, Thierry Aellen, et al.Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295: 301-305.

【20】Alexei Tsekoun, Rowel Go, Michael Pushkarsky, et al.Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process[J]. Proc Nat Acad Sciences, 2006, 103: 4831-4835.

【21】Kumar C, Patel N, Arkadiy Lyakh. High power quantum cascade lasers forinfrared countermeasures, targeting and illumination, beacons and standoff detection of explosives and CWAs[C]//Proc SPIE Micro- and Nanotechnology Sensors, Systems, and Applications VII, 2015, 9467: 946702.

【22】Manijeh Razeghi, Zhou Wenjia, Steven Slivken, et al. Recent progress of quantum cascade laser research from 3 to 12 μm at the Center for Quantum Devices[J]. Applied Optics, 2017, 56(31): H30-H44.

【23】Heydari D, Bai Y, Bandyopadhyay N, et al. High brightness angled cavity quantum cascade lasers[J]. Appl Phys Lett, 2015, 106: 091105.

【24】Hopkins J-M. High-power(AlGaIn)(AsSb) semiconductor disk laser at 2.0 μm[J]. Optics Letter, 2008, 33(2): 201-203.

【25】Zhou W J, Bandyopadhyay N, Wu D H, et al. Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design[J]. Sci Rep, 2016, 6: 25213.

【26】Bradshaw J L, Tober R L, Bruno J D, et al. Wavelength beam combined quantum cascade lasers for IRCM[C]// Proc SPIE Laser Technology for Defense and Security V, 2009, 7325: 73250K.

【27】Liu Fengqi, Wang Zhanguo. Infrared quantum cascade lasers [J]. Physics, 2001, 30(10): 596-601. (in Chinese)
刘峰奇, 王占国, 红外量子级联激光器[J]. 物理, 2001, 30(10): 596-601.

【28】Song Shufang, Xing Weirong, Liu Ming. Theory and research advancement of quantum cascade lasers[J]. Laser & Infrared, 2013, 43(9): 972-976. (in Chinese)
宋淑芳, 邢伟荣, 刘铭. 量子级联激光器的原理及研究进展[J]. 激光与红外, 2013, 43(9): 972-976.

引用该论文

Meng Dongdong,Zhang Hongbo,Li Mingshan,Lin Weiran,Shen Zhaoguo,Zhang Jie,Fan Zhongwei. Laser technology for direct IR countermeasure system[J]. Infrared and Laser Engineering, 2018, 47(11): 1105009

孟冬冬,张鸿博,李明山,林蔚然,沈兆国,张 杰,樊仲维. 定向红外对抗系统中的激光器技术[J]. 红外与激光工程, 2018, 47(11): 1105009

被引情况

【1】贾志旭,姚传飞,贾世杰,王顺宾,李真睿,赵志鹏,秦伟平,秦冠仕. 新型中红外玻璃光纤及相应激光器研究进展. 激光与光电子学进展, 2019, 56(17): 170604--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF