Journal of Innovative Optical Health Sciences, 2014, 7 (5): 1440001, Published Online: Jan. 10, 2019  

Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues

Author Affiliations
1 Department of Biomedical Engineering National University of Singapore, Singapore 117576
2 Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602
3 Department of Nanophysics, Istituto Italiano di Tecnologia via Morego 30, 16163 Genova, Italy
Abstract
Optical microscopy has become an indispensable tool for visualizing sub-cellular structures and biological processes. However, scattering in biological tissues is a major obstacle that prevents high-resolution images from being obtained from deep regions of tissue. We review common techniques, such as multiphoton microscopy (MPM) and optical coherence microscopy (OCM), for diffraction limited imaging beyond an imaging depth of 0.5 mm. Novel implementations have been emerging in recent years giving higher imaging speed, deeper penetration, and better image quality. Focal modulation microscopy (FMM) is a novel method that combines confocal spatial filtering with focal modulation to reject out-of-focus background. FMM has demonstrated an imaging depth comparable to those of MPM and OCM, near-real-time image acquisition, and the capability for multiple contrast mechanisms.

Nanguang Chen, Shakil Rehman, Colin J. R. Sheppard. Advanced optical microscopy methods for in vivo imaging of sub-cellular structures in thick biological tissues[J]. Journal of Innovative Optical Health Sciences, 2014, 7(5): 1440001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!