首页 > 论文 > 光学学报 > 39卷 > 1期(pp:126004--1)

部分相干涡旋光束研究进展(特邀综述)

Research Progress on Partially Coherent Vortex Beams (Invited Review)

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

涡旋光束具有螺旋波前、携带相位奇点和轨道角动量等物理特性, 在粒子操控、量子信息、超分辨成像、光通信等领域具有重要的应用, 并已成为学术界的研究热点。得益于相干光学理论的快速发展, 将相干性作为新的自由度引入涡旋光束中, 提出新型涡旋光束即部分相干涡旋光束。相较于完全相干涡旋光束, 部分相干涡旋光束具有独特的物理内涵和光学特性, 尤其是对其相干性和拓扑荷的联合调控会引发一系列奇特的新物理效应(如相干奇点、光束整形、偏振态转换、自修复等)。回顾了部分相干涡旋光束的基本理论及发展历程, 着重对部分相干涡旋光束的理论模型、传输特性、实验产生、实验测量和应用基础研究进行了阐述。

Abstract

Vortex beams have physical properties such as spiral wave-fronts, phase singularities, and orbital angular momentum, which have important applications in particle manipulation, quantum information, super-resolution imaging, optical communication and so on, and become the spotlight of optical researches. Owing to the rapid development of the optical coherence theory, the researchers have introduced the coherence as a new degree of freedom into the vortex beams and proposed the partially coherent vortex beams as an extension of coherent vortex beams. Such partially coherent vortex beams, compared with the fully coherent ones, have their unique physical meanings and optical properties. Particularly, some new peculiar effects (such as coherence singularities, beam shaping, polarization switches, and self-healing) emerge when the coherence and the topological charges of the partially coherent vortex beams are modulated. Here, an overview on the fundamental theory and the development history of the partially coherent vortex beams is presented. The theoretical models, the propagation characteristics, the experimental generations and measurements, as well as the applications are introduced with the combination of our recent research works.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN011

DOI:10.3788/aos201939.0126004

所属栏目:“光场调控、传输及其应用”专题Ⅱ

基金项目:国家杰出青年科学基金(11525418)、国家自然科学基金重点项目(91750201)、国家自然科学基金青年基金(11804198)

收稿日期:2018-09-03

修改稿日期:2018-09-20

网络出版日期:2018-10-15

作者单位    点击查看

曾军:山东师范大学物理与电子科学学院光场调控及应用中心, 山东省光学与光子器件重点实验室, 山东 济南 250014苏州大学物理科学与技术学院, 江苏 苏州 215006
陈亚红:山东师范大学物理与电子科学学院光场调控及应用中心, 山东省光学与光子器件重点实验室, 山东 济南 250014
刘显龙:山东师范大学物理与电子科学学院光场调控及应用中心, 山东省光学与光子器件重点实验室, 山东 济南 250014
蔡阳健:山东师范大学物理与电子科学学院光场调控及应用中心, 山东省光学与光子器件重点实验室, 山东 济南 250014苏州大学物理科学与技术学院, 江苏 苏州 215006

联系人作者:蔡阳健(yangjiancai@suda.edu.cn)

【1】Berry M. Making waves in physics[J]. Nature, 2000, 403(6765): 21.

【2】Airy G B. On the diffraction of an object-glass with circular aperture[J]. Transactions of the Cambridge Philosophical Society, 1835, 5: 283-291.

【3】Braunbek W, Laukien G. Features of refraction by a semi-plane[J]. Optik, 1952, 9: 174-179.

【4】Richards B, Wolf E. Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1959, 253(1274): 358-379.

【5】Boivin A, Dow J, Wolf E. Energy flow in the neighborhood of the focus of a coherent beam[J]. Journal of the Optical Society of America, 1967, 57(10): 1171-1175.

【6】Nye J F, Berry M V. Dislocations in wave trains[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1974, 336(1605): 165-190.

【7】Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

【8】Gbur G, Tyson R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation[J]. Journal of the Optical Society of America A, 2008, 25(1): 225-230.

【9】Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.

【10】Ng J, Lin Z F, Chan C T. Theory of optical trapping by an optical vortex beam[J]. Physical Review Letters, 2010, 104(10): 103601.

【11】Vaziri A, Pan J W, Jennewein T, et al. Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum[J]. Physical Review Letters, 2003, 91(22): 227902.

【12】Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light′s orbital angular momentum[J]. Science, 2013, 341(6145): 537-540.

【13】Tamburini F, Anzolin G, Umbriaco G, et al. Overcoming the rayleigh criterion limit with optical vortices[J]. Physical Review Letters, 2006, 97(16): 163903.

【14】Flossmann F, Schwarz U, Maier M. Propagation dynamics of optical vortices in Laguerre-Gaussian beams[J]. Optics Communications, 2005, 250(4-6): 218-230.

【15】Orlov S, Regelskis K, Smilgeviius V, et al. Propagation of Bessel beams carrying optical vortices[J]. Optics Communications, 2002, 209(1-3): 155-165.

【16】Yang Y J, Dong Y, Zhao C L, et al. Generation and propagation of an anomalous vortex beam[J]. Optics Letters, 2013, 38(24): 5418-5421.

【17】Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam[J]. Optics Letters, 2015, 40(4): 597-600.

【18】Li P, Zhang Y, Liu S, et al. Generation of perfect vectorial vortex beams[J]. Optics Letters, 2016, 41(10): 2205-2208.

【19】Beijersbergen M W, Allen L,van der Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 1993, 96(1-3): 123-132.

【20】Arlt J, Dholakia K. Generation of high-order Bessel beams by use of an axicon[J]. Optics Communications, 2000, 177(1-6): 297-301.

【21】Heckenberg N R, McDuff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 1992, 17(3): 221-223.

【22】Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5-6): 321-327.

【23】Matsumoto N, Ando T, Inoue T, et al. Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators[J]. Journal of the Optical Society of America A, 2008, 25(7): 1642-1651.

【24】Chen P, Ji W, Wei B Y, et al. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates[J]. Applied Physics Letters, 2015, 107(24): 241102.

【25】Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 2016, 10(5): 327-332.

【26】Cai X, Wang J, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366.

【27】Wu Y, Ni R, Xu Z, et al. Tunable third harmonic generation of vortex beams in an optical superlattice[J]. Optics Express, 2017, 25(25): 30820-30826.

【28】Berkhout G C G, Beijersbergen M W. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects[J]. Physical Review Letters, 2008, 101(10): 100801.

【29】Sztul H I, Alfano R R. Double-slit interference with Laguerre-Gaussian beams[J]. Optics Letters, 2006, 31(7): 999-1001.

【30】de Araujo L E E, Anderson M E. Measuring vortex charge with a triangular aperture[J]. Optics Letters, 2011, 36(6): 787-789.

【31】Vinu V R, Singh R K. Determining helicity and topological structure of coherent vortex beam from laser speckle[J]. Applied Physics Letters, 2016, 109(11): 111108.

【32】Prabhakar S, Kumar A, Banerji J, et al. Revealing the order of a vortex through its intensity record[J]. Optics Letters, 2011, 36(22): 4398-4400.

【33】Zhao P, Li S K, Feng X, et al. Measuring the complex orbital angular momentum spectrum of light with a mode-matching method[J]. Optics Letters, 2017, 42(6): 1080-1083.

【34】Wolf E. Optics in terms of observable quantities[J]. Il Nuovo Cimento, 1954, 12(6): 884-888.

【35】Wolf E. A macroscopic theory of interference and diffraction of light from finite sources. II. fields with a spectral range of arbitrary width[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1955, 230(1181): 246-265.

【36】Mandel L, Wolf E. Optical coherence and quantum optics[M]. Cambridge: Cambridge University Press, 1995.

【37】Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 1984, 53(11): 1057-1060.

【38】Wang Y S. Analysis for laser beam pattern of wide-band scanning mirror[J]. Optoelectronics·Laser, 1997, 8(4): 282-283, 290.
王云山. 激光转镜扫描光束的优化和光斑特性分析[J]. 光电子·激光, 1997, 8(4): 282-283, 290.

【39】Zubairy M S, McIver J K. Second-harmonic generation by a partially coherent beam[J]. Physical Review A, 1987, 36(1): 202-206.

【40】Cai Y J, Peschel U. Second-harmonic generation by an astigmatic partially coherent beam[J]. Optics Express, 2007, 15(23): 15480-15492.

【41】Ricklin J C, Davidson F M. Atmospheric optical communication with a Gaussian Schell beam[J]. Journal of the Optical Society of America A, 2003, 20(5): 856-866.

【42】Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication[J]. Journal of the Optical Society of America A, 2002, 19(9): 1794-1802.

【43】Cai Y J, Zhu S Y. Ghost interference with partially coherent radiation[J]. Optics Letters, 2004, 29(23): 2716-2718.

【44】Cai Y J, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation[J]. Physical Review E, 2005, 71(5): 056607.

【45】Liu X L, Wang F, Zhang M H, et al. Experimental demonstration of ghost imaging with an electromagnetic Gaussian Schell-model beam[J]. Journal of the Optical Society of America A, 2015, 32(5): 910-920.

【46】Clark J N, Huang X, Harder R, et al. High-resolution three-dimensional partially coherent diffraction imaging[J]. Nature Communications, 2012, 3: 993.

【47】Liu X L, Wang F, Zhang M H, et al. Effects of atmospheric turbulence on lensless ghost imaging with partially coherent light[J]. Applied Sciences, 2018, 8(9): 1479.

【48】van Dijk T, Fischer D G, Visser T D, et al. Effects of spatial coherence on the angular distribution of radiant intensity generated by scattering on a sphere[J]. Physical Review Letters, 2010, 104(17): 173902.

【49】Zhao C L, Cai Y J, Lu X H, et al. Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle[J]. Optics Express, 2009, 17(3): 1753-1765.

【50】Zhang J F, Wang Z Y, Cheng B, et al. Atom cooling by partially spatially coherent lasers[J]. Physical Review A, 2013, 88(2): 023416.

【51】Kermisch D. Partially coherent image processing by laser scanning[J]. Journal of the Optical Society of America, 1975, 65(8): 887-891.

【52】Wu G F, Cai Y J. Detection of a semirough target in turbulent atmosphere by a partially coherent beam[J]. Optics Letters, 2011, 36(10): 1939-1941.

【53】Gori F, Santarsiero M, Borghi R, et al. Partially coherent sources with helicoidal modes[J]. Journal of Modern Optics, 1998, 45(3): 539-554.

【54】Bouchal Z, Peina J. Non-diffracting beams with controlled spatial coherence[J]. Journal of Modern Optics, 2002, 49(10): 1673-1689.

【55】Bogatyryova G V, Fel′de C V, Polyanskii P V, et al. Partially coherent vortex beams with a separable phase[J]. Optics Letters, 2003, 28(11): 878-880.

【56】Gbur G, Visser T D. Coherence vortices in partially coherent beams[J]. Optics Communications, 2003, 222: 117-125.

【57】van Dijk T, Schouten H F, Visser T D. Coherence singularities in the field generated by partially coherent sources[J]. Physical Review A, 2009, 79(3): 033805.

【58】Gbur G, Visser T D, Wolf E. Hidden singularities in partially coherent wavefields[J]. Journal of Optics A: Pure and Applied Optics, 2004, 6(5): S239-S242.

【59】Palacios D M, Maleev I D, Marathay A S, et al. Spatial correlation singularity of a vortex field[J]. Physical Review Letters, 2004, 92(14): 143905.

【60】Liu P S, Lü B D. Coherence vortices in partially coherent beams consisting of a superposition of Laguerre-Gaussian modes[J]. 2007(5): 2623-2628.
刘普生, 吕百达. 拉盖尔-高斯模叠加而成的部分相干光的相干涡旋[J]. 物理学报, 2007(5): 2623-2628.

【61】Li J H, Zhang H R, Lü B. Partially coherent vortex beams propagating through slant atmospheric turbulence and coherence vortex evolution[J]. Optics & Laser Technology, 2010, 42(2): 428-433.

【62】Liu Z, Zhao D. Coherence vortex properties of partially coherent flat-topped vortex beams[J]. Applied Physics B, 2012, 106(3): 691-700.

【63】Rao L Z, Pu J X. Focusing of partially coherent vortex beams by an aperture lens[J]. Chinese Physics Letters, 2007, 24(5): 1252-1255.

【64】Wang T, Pu J X, Chen Z Y. Propagation of partially coherent vortex beams in a turbulent atmosphere[J]. Optical Engineering, 2008, 47(3): 036002.

【65】Cheng K, Lü B D. Composite coherence vortices in coherent and incoherent superpositions of two off-axis partially coherent vortex beams[J]. Journal of Modern Optics, 2008, 55(17): 2751-2764.

【66】Wang F, Zhu S J, Cai Y J. Experimental study of the focusing properties of a Gaussian Schell-model vortex beam[J]. Optics Letters, 2011, 36(16): 3281-3283.

【67】Zhao C L, Cai Y J. Trapping two types of particles using a focused partially coherent elegant Laguerre-Gaussian beam[J]. Optics Letters, 2011, 36(12): 2251-2253.

【68】Li J H, Lü B D. Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices[J]. Journal of Optics A: Pure and Applied Optics, 2009, 11(4): 045710.

【69】Liu X L, Shen Y, Liu L, et al. Experimental demonstration of vortex phase-induced reduction in scintillation of a partially coherent beam[J]. Optics Letters, 2013, 38(24): 5323-5326.

【70】Wang T. Propagation of partially coherent vortex beams in a turbulent atmosphere[J]. Optical Engineering, 2008, 47(3): 036002.

【71】van Dijk T, Visser T D. Evolution of singularities in a partially coherent vortex beam[J]. Journal of the Optical Society of America A, 2009, 26(4): 741-744.

【72】Yang Y J, Chen M Z, Mazilu M, et al. Effect of the radial and azimuthal mode indices of a partially coherent vortex field upon a spatial correlation singularity[J]. New Journal of Physics, 2013, 15(11): 113053.

【73】Qin Z Y, Tao R M, Zhou P, et al. Propagation of partially coherent Bessel-Gaussian beams carrying optical vortices in non-Kolmogorov turbulence[J]. Optics & Laser Technology, 2014, 56: 182-188.

【74】Zhang Z, Fan H, Xu H F, et al. Three-dimensional focus shaping of partially coherent circularly polarized vortex beams using a binary optic[J]. Journal of Optics, 2015, 17(6): 065611.

【75】Singh R K, Sharma A M, Senthilkumaran P. Vortex array embedded in a partially coherent beam[J]. Optics Letters, 2015, 40(12): 2751-2754.

【76】Liu D J, Wang Y C, Yin H M. Evolution properties of partially coherent flat-topped vortex hollow beam in oceanic turbulence[J]. Applied Optics, 2015, 54(35): 10510-10516.

【77】Cheng M J, Guo L X, Li J T, et al. Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean[J]. Applied Optics, 2016, 55(17): 4642-4648.

【78】Zhang Y L, Ma D L, Zhou Z Y, et al. Research on partially coherent flat-topped vortex hollow beam propagation in turbulent atmosphere[J]. Applied Optics, 2017, 56(10): 2922-2926.

【79】Liu X L, Peng X F, Liu L, et al. Self-reconstruction of the degree of coherence of a partially coherent vortex beam obstructed by an opaque obstacle[J]. Applied Physics Letters, 2017, 110(18): 181104.

【80】Stahl C S D, Gbur G. Partially coherent vortex beams of arbitrary order[J]. Journal of the Optical Society of America A, 2017, 34(10): 1793-1799.

【81】Ostrovsky A S, García-García J, Rickenstorff-Parrao C, et al. Partially coherent diffraction-free vortex beams with a Bessel-mode structure[J]. Optics Letters, 2017, 42(24): 5182-5185.

【82】Gori F, Santarsiero M. Devising genuine spatial correlation functions[J]. Optics Letters, 2007, 32(24): 3531-3533.

【83】Cai Y J, Chen Y H, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review (Invited)[J]. Journal of the Optical Society of America A, 2014, 31(9): 2083-2096.

【84】Zhang Y T, Liu L, Zhao C L, et al. Multi-gaussian schell-model vortex beam[J]. Physics Letters A, 2014, 378(9): 750-754.

【85】Liu H L, Chen D, Xia J, et al. Influences of uniaxial crystal on partially coherent multi-Gaussian Schell-model vortex beams[J]. Optical Engineering, 2016, 55(11): 116101.

【86】Mei Z R, Mao Y H, Wang Y Y. Electromagnetic multi-Gaussian Schell-model vortex light sources and their radiation field properties[J]. Optics Express, 2018, 26(17): 21992-22000.

【87】Chen Y H, Wang F, Zhao C L, et al. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam[J]. Optics Express, 2014, 22(5): 5826-5838.

【88】Xu H F, Zhou Y, Wu H W, et al. Focus shaping of the radially polarized Laguerre-Gaussian-correlated Schell-model vortex beams[J]. Optics Express, 2018, 26(16): 20076-20088.

【89】Mei Z R. Modeling for partially spatially coherent vortex beams[J]. IEEE Photonics Journal, 2017, 9(5): 6102306.

【90】Coutts D W. Double-pass copper vapor laser master-oscillator power-amplifier systems: generation of flat-top focused beams for fiber coupling and percussion drilling[J]. IEEE Journal of Quantum Electronics, 2002, 38(9): 1217-1224.

【91】Nishi N, Jitsuno T,Tsubakimoto K, et al. Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target[J]. Optical Review, 2000, 7(3): 216-220.

【92】Soskin M S, Vasnetsov M V. Singular optics[J]. Progress in Optics, 2001, 42: 219-276.

【93】Andrews D L. Structured light and its applications[M]. Burlington: Elsevier Press, 2008.

【94】Gbur G. Singular optics[M]. Boca Raton: CRC Press, 2016.

【95】Kotlyar V V, Elfstrom H, Turunen J, et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate[J]. Journal of the Optical Society of America A, 2005, 22(5): 849-861.

【96】Wang F, Cai Y J, Korotkova O. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders[J]. Optics Express, 2009, 17(25): 22366-22379.

【97】Gori F, Guattari G, Padovani C. Bessel-gauss beams[J]. Optics Communications, 1987, 64(6): 491-495.

【98】Born M, Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light[M]. Cambridge: Cambridge University Press, 1999.

【99】Wolf E. Introduction to the Theory of coherence and polarization of light[M]. Cambridge: Cambridge University Press, 2008.

【100】Liu X L, Wang F, Liu L, et al. Generation and propagation of an electromagnetic Gaussian Schell-model vortex beam[J]. Journal of the Optical Society of America A, 2015, 32(11): 2058-2065.

【101】Guo L N, Chen Y H, Liu X L, et al. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam[J]. Optics Express, 2016, 24(13): 13714-13728.

【102】Li J H, Lü B D. Comparative study of partially coherent vortex beam propagations through atmospheric turbulence along a uplink path and a downlink path[J]. Acta Physica Sinica, 2011, 60(7): 074205.
李晋红, 吕百达. 部分相干涡旋光束通过大气湍流上行和下行传输的比较研究[J]. 物理学报, 2011, 60(7): 074205.

【103】Li J H, Zeng J, Duan M L. Classification of coherent vortices creation and distance of topological charge conservation in non-Kolmogorov atmospheric turbulence[J]. Optics Express, 2015, 23(9): 11556-11565.

【104】Zeng J, Li J. Dynamic evolution and classification of coherent vortices in atmospheric turbulence[J]. Optica Applicata, 2015, 45(3): 229-308.

【105】Zeng J, Li J H. Distance for conservation of topological charge in atmospheric turbulence[J]. Acta Optica Sinica, 2015, 35(s1): s101005.
曾军, 李晋红. 拓扑电荷在大气湍流中的守恒距离[J]. 光学学报, 2015, 35(s1): s101005.

【106】Wang W, Takeda M. Coherence current, coherence vortex, and the conservation law of coherence[J]. Physical Review Letters, 2006, 96(22): 223904.

【107】Wang W, Duan Z H, Hanson S G, et al. Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function[J]. Physical Review Letters, 2006, 96(7): 073902.

【108】Wang W, Hanson S G, Miyamoto Y, et al. Experimental investigation of local properties and statistics of optical vortices in random wave fields[J]. Physical Review Letters, 2005, 94(10): 103902.

【109】Raghunathan S B, Schouten H F, Visser T D. Correlation singularities in partially coherent electromagnetic beams[J]. Optics Letters, 2012, 37(20): 4179-4181.

【110】Zhang Y T, Cui Y, Wang F, et al. Correlation singularities in a partially coherent electromagnetic beam with initially radial polarization[J]. Optics Express, 2015, 23(9): 11483-11492.

【111】Wang F, Zhu S J, Cai Y J. Experimental study of the focusing properties of a Gaussian Schell-model vortex beam[J]. Optics Letters, 2011, 36(16): 3281-3283.

【112】Chen J, Liu X L, Yu J Y, et al. Simultaneous determination of the sign and the magnitude of the topological charge of a partially coherent vortex beam[J]. Applied Physics B, 2016, 122(7): 201.

【113】Zhao C L, Dong Y, Wang Y M, et al. Experimental generation of a partially coherent Laguerre-Gaussian beam[J]. Applied Physics B, 2012, 109(2): 345-349.

【114】Wang F, Cai Y J. Experimental generation of a partially coherent flat-topped beam[J]. Optics Letters, 2008, 33(16): 1795-1797.

【115】Crosignani B, Daino B, di Porto P. Light scattering by a rotating disk[J]. Journal of Applied Physics, 1971, 42(1): 399-403.

【116】Nagata K I, Umebara T. Spatial correlation of gaussian beam in moving ground glass[J]. Japanese Journal of Applied Physics, 1973, 12(5): 694-705.

【117】Shirai T, Wolf E. Transformation of coherence and of the spectrum of light by a moving diffuser[J]. Journal of Modern Optics, 2001, 48(4): 717-727.

【118】Zhao C L, Wang F, Dong Y, et al. Effect of spatial coherence on determining the topological charge of a vortex beam[J]. Applied Physics Letters, 2012, 101(26): 261104.

【119】Carter W H, Bertolotti M. An analysis of the far-field coherence and radiant intensity of light scattered from liquid crystals[J]. Journal of the Optical Society of America, 1978, 68(3): 329-333.

【120】García E H, Ostrovsky A S. Modulation of spatial coherence of optical field by means of liquid crystal light modulator[J]. Revista Mexicana De Fisica, 2005, 51(5): 442-446.

【121】Wang J, Huang H K, Chen Y K, et al. Twisted partially coherent array sources and their transmission in anisotropic turbulence[J]. Optics Express, 2018, 26(20): 25974-25988.

【122】Mercer J. Functions of positive and negative type, and their connection with the theory of integral equations[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1909, 209: 415-446.

【123】Chen X, Li J, Rafsanjani S M H, et al. Synthesis of Im-Bessel correlated beams via coherent modes[J]. Optics Letters, 2018, 43(15): 3590-3593.

【124】Ostrovsky A S, García-García J, Rickenstorff-Parrao C, et al. Partially coherent diffraction-free vortex beams with a Bessel-mode structure[J]. Optics Letters, 2017, 42(24): 5182-5185.

【125】Perez-Garcia B, Yepiz A, Hernandez-Aranda R I, et al. Digital generation of partially coherent vortex beams[J]. Optics Letters, 2016, 41(15): 3471-3474.

【126】Zernike F. The concept of degree of coherence and its application to optical problems[J]. Physica, 1938, 5(8): 785-795.

【127】Chen Y H, Cai Y. Laser coherence modulation and its applications[J]. Acta Optica Sinica, 2016, 36(10): 1026002.
陈亚红, 蔡阳健. 激光相干性调控及应用[J]. 光学学报, 2016, 36(10): 1026002.

【128】Wang F, Cai Y J, He S L. Experimental observation of coincidence fractional Fourier transform with a partially coherent beam[J]. Optics Express, 2006, 14(16): 6999-7004.

【129】Chen Y H, Wang F, Liu L, et al. Generation and propagation of a partially coherent vector beam with special correlation functions[J]. Physical Review A, 2014, 89(1): 013801.

【130】Liang C H, Wang F, Liu X L, et al. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry[J]. Optics Letters, 2014, 39(4): 769-772.

【131】Chen Y H, Gu J X, Wang F, et al. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam[J]. Physical Review A, 2015, 91: 013823.

【132】Liu X L, Wu T F, Liu L, et al. Experimental determination of the azimuthal and radial mode orders of a partially coherent LGpl beam (Invited)[J]. Chinese Optics Letters, 2017, 15(3): 030002.

【133】Wang F, Liu X L, Yuan Y S, et al. Experimental generation of partially coherent beams with different complex degrees of coherence[J]. Optics Letters, 2013, 38(11): 1814-1816.

【134】Escalante A Y,Perez-Garcia B, Hernandez-Aranda R I, et al. Determination of angular momentum content in partially coherent beams through cross correlation measurements[J]. Proceedings of SPIE, 2013, 8843: 884302.

【135】Liu X L, Wang F, Liu L, et al. Complex degree of coherence measurement for classical statistical fields[J]. Optics Letters, 2017, 42(1): 77-80.

【136】Guo M J, Zeng J, Li J H. Generation and interference of vortex beam based on spiral phase plate[J]. Laser & Optoelectronics Progress, 2016, 53(9): 092602.
郭苗军, 曾军, 李晋红. 基于螺旋相位板的涡旋光束的产生与干涉[J]. 激光与光电子学进展, 2016, 53(9): 092602.

【137】Hickmann J M, Fonseca E J S, Soares W C, et al. Unveiling a truncated optical lattice associated with a triangular aperture using light′s orbital angular momentum[J]. Physical Review Letters, 2010, 105(5): 053904.

【138】Guo C S, Yue S J, Wei G X. Measuring the orbital angular momentum of optical vortices using a multipinhole plate[J]. Applied Physics Letters, 2009, 94(23): 231104.

【139】Zhou J, Zhang W H, Chen L X. Experimental detection of high-order or fractional orbital angular momentum of light based on a robust mode converter[J]. Applied Physics Letters, 2016, 108(11): 111108.

【140】Liu R F, Wang F R, Chen D X, et al. Measuring mode indices of a partially coherent vortex beam with Hanbury Brown and Twiss type experiment[J]. Applied Physics Letters, 2016, 108(5): 051107.

【141】Yang Y J, Dong Y, Zhao C L, et al. Autocorrelation properties of fully coherent beam with and without orbital angular momentum[J]. Optics Express, 2014, 22(3): 2925-2932.

【142】Dixit S N, Thomas I M, Woods B W, et al. Random phase plates for beam smoothing on the Nova laser[J]. Applied Optics, 1993, 32(14): 2543-2554.

【143】Deng X M, Liang X C, Chen Z Z, et al. Uniform illumination of large targets using a lens array[J]. Applied Optics, 1986, 25(3): 377-381.

【144】Gahagan K T,Swartzlander G A. Optical vortex trapping of particles[J]. Optics Letters, 1996, 21(11): 827-829.

【145】Dong Y M, Wang F, Zhao C L, et al. Effect of spatial coherence on propagation, tight focusing, and radiation forces of an azimuthally polarized beam[J]. Physical Review A, 2012, 86: 013840.

【146】Gahagan K T, Swartzlander G A. Trapping of low-index microparticles in an optical vortex[J]. Journal of the Optical Society of America B, 1998, 15(2): 524-534.

【147】Sato S, Harada Y, Waseda Y. Optical trapping of microscopic metal particles[J]. Optics Letters, 1994, 19(22): 1807-1809.

【148】Simpson N B, McGloin D, Dholakia K, et al. Optical tweezers with increased axial trapping efficiency[J]. Journal of Modern Optics, 1998, 45(9): 1943-1949.

【149】Wang S J, Baykal Y, Plonus M A. Receiver-aperture averaging effects for the intensity fluctuation of a beam wave in the turbulent atmosphere[J].Journal of the Optical Society of America, 1983, 73(6): 831-837.

【150】Banakh V A, Buldakov V M, Mironov V L. Thermal self-interaction of a partially coherent laser beam in a turbulent atmosphere[J]. Soviet Journal of Quantum Electronics, 1986, 16(6): 800-803.

【151】Berman G P, Bishop A R, Chernobrod B M, et al. Suppression of intensity fluctuations in free space high-speed optical communication based on spectral encoding of a partially coherent beam[J]. Optics Communications, 2007, 280(2): 264-270.

【152】Wang F, Yu J Y, Liu X L, et al. Research progress of partially coherent beam propagation in turbulent atmosphere[J]. Acta Physica Sinica, 2018, 67(18): 184203.
王飞, 余佳益, 刘显龙, 等. 部分相干光束经过湍流大气传输研究进展[J]. 物理学报, 2018, 67(18): 184203.

【153】Baykal Y, Eyyubolu H T, Cai Y J. Scintillations of partially coherent multiple Gaussian beams in turbulence[J]. Applied Optics, 2009, 48(10): 1943-1954.

【154】Yousefi M, Golmohammady S, Mashal A, et al. Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence[J]. Journal of the Optical Society of America A, 2015, 32(11): 1982-1992.

【155】Yuan Y S, Liu X L, Wang F, et al. Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Communications, 2013, 305: 57-65.

【156】Korotkova O. Scintillation index of a stochastic electromagnetic beam propagating in random media[J]. Optics Communications, 2008, 281(9): 2342-2348.

【157】Wang F, Liu X L, Liu L, et al. Experimental study of the scintillation index of a radially polarized beam with controllable spatial coherence[J]. Applied Physics Letters, 2013, 103(9): 091102.

【158】Wang F, Cai Y J, Eyyubolu H T, et al. Twist phase-induced reduction in scintillation of a partially coherent beam in turbulent atmosphere[J]. Optics Letters, 2012, 37(2): 184-186.

【159】Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429-R3432.

【160】Barbosa G A. Quantum images in double-slit experiments with spontaneous down-conversion light[J]. Physical Review A, 1996, 54(5): 4473-4478.

【161】Gatti A, Brambilla E, Lugiato L A, et al. Quantum entangled images[J]. Physical Review Letters, 1999, 83(9): 1763-1766.

【162】Saleh B E A, Abouraddy A F, Sergienko A V, et al. Duality between partial coherence and partial entanglement[J]. Physical Review A, 2000, 62(4): 043816.

【163】Abouraddy A F, Saleh B E A, Sergienko A V, et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 2001, 87(12): 123602.

【164】Abouraddy A F, Saleh B E A, Sergienko A V, et al. Quantum holography[J]. Optics Express, 2001, 9(10): 498-505.

【165】Gatti A, Brambilla E, Lugiato L A. Entangledimaging and wave-particle duality: from the microscopic to the macroscopic realm[J]. Physical Review Letters, 2003, 90(13): 133603.

【166】Valencia A, Scarcelli G, D′angelo M, et al. Two-photon imaging with thermal light[J]. Physical Review Letters, 2005, 94(6): 063601.

引用该论文

Zeng Jun,Chen Yahong,Liu Xianlong,Cai Yangjian. Research Progress on Partially Coherent Vortex Beams (Invited Review)[J]. Acta Optica Sinica, 2019, 39(1): 0126004

曾军,陈亚红,刘显龙,蔡阳健. 部分相干涡旋光束研究进展(特邀综述)[J]. 光学学报, 2019, 39(1): 0126004

被引情况

【1】 孟晶晶, 余锦, 貊泽强, 王金舵, 代守军, 王晓东. 光束积分激光空间整形技术. 激光与光电子学进展, 2019, 56(13): 130002--1

【2】 裴春莹, 茅志翔, 徐素鹏, 夏勇, 尹亚玲. 涡旋光束轨道角动量的一种新型干涉检测方法. 激光与光电子学进展, 2019, 56(14): 140502--1

【3】 刘曼, 张美娜. 分数阶涡旋光束在远场的衍射特性. 光学学报, 2019, 39(7): 726001--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF