提高光谱匹配精度的散射噪声消除方法
Scattering Noise Elimination Method for Improving Spectral Matching Accuracy
摘要
光谱仪器采集光谱数据时, 散射噪声会对光谱数据产生影响。同一种矿物质在不同颗粒度和浓度状态下的光谱数据曲线会产生偏移, 进而降低光谱数据的匹配精度。针对这一问题, 研究了基于多元散射校正融合增广拉格朗日消除光谱数据散射噪声和偏移的方法, 先用该方法对光谱数据预处理进行校正, 再结合光谱角方法进行相似度匹配测量。实验选取了6种矿物和6种壁画颜料作为光谱数据样本, 使用光谱匹配方法分别对原光谱数据和消除散射噪声和偏移后的光谱数据进行匹配计算和分析。实验结果表明, 使用多元散射校正融合增广拉格朗日方法消除散射噪声和偏移校正后的光谱数据匹配精度高于未校正的光谱数据, 因此该方法可提高识别效果。
Abstract
Scattering noise affects spectral data collected with spectral instruments. Spectral data curves measured for the same mineral species at different particle sizes and concentrations can produce an offset, which reduces the accuracy for matching the spectral data. To solve this problem, the present study reported a method based on the multi-scattering correction using merged augmented Lagrangian, in order to eliminate scattering noise and the resulting offset of spectral data; the method was firstly used accurate preprocessing, and then was used to similarity matching measurements combined with the spectral angles of the data. Six minerals and six pigments in the murals were selected as samples for the experiments. The spectral matching method was used to match and analyze the spectral data, which eliminated scattering noise and offset. Experimental results show that spectral data corrected using the proposed method are more accurately matched than uncorrected spectral data. In addition, the proposed method is more effective for mineral-species identification.
中图分类号:O433.4
所属栏目:表面光学
基金项目:国家自然科学基金青年基金(61701388)、教育部归国留学人员科研扶持项目(K05055)、陕西省科技厅国际合作项目(2017KW-036)、陕西省自然科学基础研究计划项目(2018JM6080)、西安市科技局科技计划项目[2017079CG/RC042(XAKD0044)]
收稿日期:2018-07-04
修改稿日期:2018-07-26
网络出版日期:2018-08-02
作者单位 点击查看
王可:西安建筑科技大学信息与控制工程学院, 陕西 西安 710055
王伟超:西安建筑科技大学信息与控制工程学院, 陕西 西安 710055
联系人作者:王可(wk1307@yeah.net)
【1】Sánchez A, Tuón J, Montejo M, et al. Micro Raman spectroscopy (MRS) and energy dispersive X-ray microfluorescence (μEDXRF) analysis of pigments in the Iberian cemetery of Tutugi (from the fourth to the third century BC, Galera, Granada, Spain)[J]. Journal of Raman Spectroscopy, 2012, 43(11): 1788-1795.
【3】Wang L L, Li Z M, Ma Q L, et al. Non-destructive and in-situ identification of pigments in wall paintings using hyperspectral technology[J]. Dunhuang Research, 2015(3): 122-128.
王乐乐, 李志敏, 马清林, 等. 高光谱技术无损鉴定壁画颜料之研究——以西藏拉萨大昭寺壁画为例[J]. 敦煌研究, 2015(3): 122-128.
【6】Padma S, Sanjeevi S. Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 32: 138-151.
【9】Shanmugam S, Perumal P S. Spectral matching approaches in hyperspectral image processing[J]. International Journal of Remote Sensing, 2014, 35(24): 8217-8251.
【11】Gao L, Zhu X C, Li C, et al. Improve the prediction accuracy of apple tree canopy nitrogen content through multiple scattering correction using spectroscopy[J]. Agricultural Sciences, 2016, 7(10): 651-659.
【12】Dieu V N, Ongsakul W. Augmented Lagrange Hopfield network based Lagrangian relaxation for unit commitment[J]. International Journal of Electrical Power & Energy Systems, 2011, 33(3): 522-530.
【13】Mou Y, You X G, Xu D Q, et al. Regularized multivariate scatter correction[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 132: 168-174.
【15】Antczak T. The exact absolute value penalty function method for identifying strict global minima of order m in nonconvex nonsmooth programming[J]. Optimization Letters, 2016, 10(7): 1561-1576.
【16】Chang X K. Augmented Lagrangian iteration method for convex quadratic SDP[J]. Mathematica Numerica Sinica, 2014, 36(2): 133-142.
常小凯. 二次半定规划的增广拉格朗日算法[J]. 计算数学, 2014, 36(2): 133-142.
【23】Zhu W, Tai X C, Chan T. Augmented Lagrangian method for a mean curvature based image denoising model[J]. Inverse Problems and Imaging, 2013, 7(4): 1409-1432.
引用该论文
Wang Zhan,Wang Ke,Wang Weichao. Scattering Noise Elimination Method for Improving Spectral Matching Accuracy[J]. Laser & Optoelectronics Progress, 2019, 56(2): 022401
王展,王可,王伟超. 提高光谱匹配精度的散射噪声消除方法[J]. 激光与光电子学进展, 2019, 56(2): 022401