首页 > 论文 > Advanced Photonics > 1卷 > 1期(pp:16001--1)

Bound states in the continuum and Fano resonances in the strong mode coupling regime

Bound states in the continuum and Fano resonances in the strong mode coupling regime

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

The study of resonant dielectric nanostructures with a high refractive index is a new research direction in the nanoscale optics and metamaterial-inspired nanophotonics. Because of the unique optically induced electric and magnetic Mie resonances, high-index nanoscale structures are expected to complement or even replace different plasmonic components in a range of potential applications. We study a strong coupling between modes of a single subwavelength high-index dielectric resonator and analyze the mode transformation and Fano resonances when the resonator’s aspect ratio varies. We demonstrate that strong mode coupling results in resonances with high-quality factors, which are related to the physics of bound states in the continuum when the radiative losses are almost suppressed due to the Friedrich–Wintgen scenario of destructive interference. We explain the physics of these states in terms of multipole decomposition, and show that their appearance is accompanied by a drastic change in the far-field radiation pattern. We reveal a fundamental link between the formation of the high-quality resonances and peculiarities of the Fano parameter in the scattering cross-section spectra. Our theoretical findings are confirmed by microwave experiments for the scattering of high-index cylindrical resonators with a tunable aspect ratio. The proposed mechanism of the strong mode coupling in single subwavelength high-index resonators accompanied by resonances with high-quality factors helps to extend substantially functionalities of all-dielectric nanophotonics, which opens horizons for active and passive nanoscale metadevices.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1117/1.ap.1.1.016001

所属栏目:Research Articles

基金项目:We acknowledge fruitful discussions with H. Atwater, I.V. Shadrivov, P.A. Belov, A.N. Poddubny, A. Polman, and A. Moroz. The numerical calculations were performed with support from the Ministry of Education and Science of the Russian Federation (Project 3.1500.2017/4.6) and the Australian Research Council. The experimental study of the cylinder SCS in the microwave frequency range was supported by the Russian Science Foundation (17-79-20379). The analytical calculations with resonant-state expansion method were performed with support from the Russian Science Foundation (17-12-01581). A. A. B., K. L. K. and Z. F. S. acknowledge support from the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (Russia).

收稿日期:2018-10-31

修改稿日期:--

网络出版日期:--

作者单位    点击查看

Andrey A. Bogdanov:ITMO University, Department of Nanophotonics and Metamaterials, St. Petersburg, RussiaIoffe Institute, St. Petersburg, Russia
Kirill L. Koshelev:ITMO University, Department of Nanophotonics and Metamaterials, St. Petersburg, RussiaAustralian National University, Nonlinear Physics Center, Canberra, Australia
Polina V. Kapitanova:ITMO University, Department of Nanophotonics and Metamaterials, St. Petersburg, Russia
Mikhail V. Rybin:ITMO University, Department of Nanophotonics and Metamaterials, St. Petersburg, RussiaIoffe Institute, St. Petersburg, Russia
Sergey A. Gladyshev:ITMO University, Department of Nanophotonics and Metamaterials, St. Petersburg, Russia
Zarina F. Sadrieva:ITMO University, Department of Nanophotonics and Metamaterials, St. Petersburg, Russia
Kirill B. Samusev:ITMO University, Department of Nanophotonics and Metamaterials, St. Petersburg, RussiaIoffe Institute, St. Petersburg, Russia
Yuri S. Kivshar:ITMO University, Department of Nanophotonics and Metamaterials, St. Petersburg, RussiaAustralian National University, Nonlinear Physics Center, Canberra, Australia
Mikhail F. Limonov:ITMO University, Department of Nanophotonics and Metamaterials, St. Petersburg, RussiaIoffe Institute, St. Petersburg, Russia

联系人作者:Yuri S. Kivshar(ysk@internode.on.net)

【1】K. J.Vahala, “Optical microcavities,” Nature424, 839–846 (2003).

【2】B.Minet al., “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature457, 455–458 (2009).

【3】S.-H.Kwonet al., “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010).1530-6984

【4】Y.Akahaneet al., “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003).

【5】A.Matsko and V.Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron.12(1), 3–14 (2006).1077-260X

【6】H. M.Laiet al., “Effect of perturbations on the widths of narrow morphology-dependent resonances in Mie scattering,” J. Opt. Soc. Am. B8(9), 1962–1973 (1991).0740-3224

【7】S. G.Johnsonet al., “Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,” Appl. Phys. Lett.78(22), 3388–3390 (2001).0003-6951

【8】M. V.Rybinet al., “High-q supercavity modes in subwavelength dielectric resonators,” Phys. Rev. Lett.119(24), 243901 (2017).0031-9007

【9】J.Von Neuman and E.Wigner, “Uber merkwurdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen,” Phys. Z.30, 467–470 (1929).

【10】H.Friedrich and D.Wintgen, “Interfering resonances and bound states in the continuum,” Phys. Rev. A32(6), 3231–3242 (1985).

【11】R.Parker, “Resonance effects in wake shedding from parallel plates: some experimental observations,” J. Sound Vib.4(1), 62–72 (1966).0022-460Xhttps://doi.org/10.1016/0022-460X(66)90154-4

【12】R.Parker, “Resonance effects in wake shedding from parallel plates: calculation of resonant frequencies,” J. Sound Vib.5(2), 330–343 (1967).0022-460Xhttps://doi.org/10.1016/0022-460X(67)90113-7

【13】A. A.Lyapinaet al., “Bound states in the continuum in open acoustic resonators,” J. Fluid Mech.780, 370–387 (2015).0022-1120

【14】D. C.Marinica, A. G.Borisov and S. V.Shabanov, “Bound states in the continuum in photonics,” Phys. Rev. Lett.100(18), 183902 (2008).0031-9007

【15】E. N.Bulgakov and A. F.Sadreev, “Bound states in the continuum in photonic waveguides inspired by defects,” Phys. Rev. B78(7), 075105 (2008).

【16】R. F.Ndangali and S. V.Shabanov, “Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders,” J. Math. Phys.51(10), 102901 (2010).

【17】C. W.Hsuet al., “Observation of trapped light within the radiation continuum,” Nature499, 188–191 (2013).

【18】F.Monticone and A.Alù, “Embedded photonic eigenvalues in 3D nanostructures,” Phys. Rev. Lett.112(21), 213903 (2014).0031-9007

【19】M.Rybin and Y.Kivshar, “Supercavity lasing,” Nature541, 164–165 (2017).

【20】Y.Plotniket al., “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett.107(18), 183901 (2011).0031-9007

【21】M. I.Molina, A. E.Miroshnichenko and Y. S.Kivshar, “Surface bound states in the continuum,” Phys. Rev. Lett.108(7), 070401 (2012).0031-9007

【22】G.Corrielliet al., “Observation of surface states with algebraic localization,” Phys. Rev. Lett.111(22), 220403 (2013).0031-9007

【23】J.Wiersig, “Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities,” Phys. Rev. Lett.97(25), 253901 (2006).0031-9007

【24】J.Unterhinninghofen, J.Wiersig and M.Hentschel, “Goos-H?nchen shift and localization of optical modes in deformed microcavities,” Phys. Rev. E78(1), 016201 (2008).

【25】T.Lepetit and B.Kanté, “Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum,” Phys. Rev. B90(24), 241103 (2014).

【26】T.Lepetitet al., “Resonance continuum coupling in high-permittivity dielectric metamaterials,” Phys. Rev. B82(19), 195307 (2010).

【27】S. I.Azzamet al., “Formation of bound states in the continuum in hybrid plasmonic-photonic systems,” Phys. Rev. Lett.121(25), 253901 (2018).

【28】L.Fonda, “Bound states embedded in the continuum and the formal theory of scattering,” Ann. Phys.22(1), 123–132 (1963).https://doi.org/10.1016/0003-4916(63)90299-9

【29】C. S.Kimet al., “Resonant tunneling in a quantum waveguide: effect of a finite-size attractive impurity,” Phys. Rev. B60(15), 10962 (1999).

【30】Z. F.Sadrievaet al., “Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness,” ACS Photon.4(4), 723–727 (2017).

【31】C.Blanchard, J.-P.Hugonin and C.Sauvan, “Fano resonances in photonic crystal slabs near optical bound states in the continuum,” Phys. Rev. B94(15), 155303 (2016).

【32】E. N.Bulgakov and A. F.Sadreev, “Propagating Bloch bound states with orbital angular momentum above the light line in the array of dielectric spheres,” J. Opt. Soc. Am. A34(6), 949–952 (2017).

【33】I.Liberal and N.Engheta, “Near-zero refractive index photonics,” Nat. Photonics11(3), 149–158 (2017).1749-4885

【34】M. I.Mishchenko, “Light scattering by size–shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength,” Appl. Opt.32(24), 4652–4666 (1993).0003-6935

【35】M. I.Mishchenko and L. D.Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun.109(1–2), 16–21 (1994).0030-4018https://doi.org/10.1016/0030-4018(94)90731-5

【36】K.Zhang and D.Li, Electromagnetic Theory for Microwaves and Optoelectronics, Springer, Berlin (2008).

【37】D. J.Jackson, Classical Electrodynamics, John Wiley and Sons, New York (1998).

【38】A. N.Oraevsky, “Whispering-gallery waves,” Quantum Electron.32(5), 377–400 (2002).1063-7818

【39】V. S.Ilchenko and A. B.Matsko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron.12(1), 15–32 (2006).1077-260X

【40】L. D.Landau and E. M.Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 3rd ed., Pergamon, Oxford (1989).

【41】M.Scully and M.Zubairy, Quantum Optics, Cambridge University Press, Cambridge, United Kingdom (1997).

【42】H. M.Laiet al., “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A41(9), 5187 (1990).

【43】E. S. C.Chinget al., “Quasinormal-mode expansion for waves in open systems,” Rev. Mod. Phys.70(4), 1545–1554 (1998).0034-6861

【44】E. A.Muljarov, W.Langbein and R.Zimmermann, “Brillouin–Wigner perturbation theory in open electromagnetic systems,” EPL Europhys. Lett.92(5), 50010 (2011).

【45】Y. B.Zeldovich, “On the theory of unstable states,” J. Exp. Theor. Phys.12(3), 542–545 (1961).1063-7761

【46】L.Brillouin, “Les problèmes de perturbations et les champs self-consistents,” J. Phys. Radium3(9), 373–389 (1932).0368-3842

【47】R. M.More, “Theory of decaying states,” Phys. Rev. A4(5), 1782–1790 (1971).

【48】M. V.Rybinet al., “Mie scattering as a cascade of Fano resonances,” Opt. Express21(24), 30107–30113 (2013).1094-4087

【49】M. V.Rybinet al., “Switching from visibility to invisibility via Fano resonances: theory and experiment,” Sci. Rep.5, 8774 (2015).

【50】M. I.Tribelsky and A. E.Miroshnichenko, “Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles,” Phys. Rev. A93(5), 053837 (2016).

【51】X.Kong and G.Xiao, “Fano resonances in core-shell particles with high permittivity covers,” in Prog. Electromagn. Res. Symp., IEEE, pp.?1715–1719 (2016).

【52】U.Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).0031-899X

【53】M. F.Limonovet al., “Fano resonances in photonics,” Nat. Photonics11(9), 543–554 (2017).

【54】B.Gallinet and O. J. F.Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011).

【55】A. B.Evlyukhinet al., “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B94(20), 205434 (2016).

【56】M. Doost, W.Langbein and E. A.Muljarov, “Resonant-state expansion applied to three-dimensional open optical systems,” Phys. Rev. A90(1), 013834 (2014).

【57】J. S. T.Gongora, G.Favraud and A.Fratalocchi, “Fundamental and high-order anapoles in all-dielectric metamaterials via Fano–Feshbach modes competition,” Nanotechnology28(10), 104001 (2017).0957-4484

【58】W.Suh, Z.Wang and S.Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron.40(10), 1511–1518 (2004).0018-9197

【59】S.Muhliget al., “Multipole analysis of eta-atoms,” Metamaterials5, 64–73 (2011).1873-1988

【60】L.Zhanget al., “Photonic-crystal exciton-polaritons in monolayer semiconductors,” Nat. Commun.9, 713 (2018).

【61】U.Kaatze, “Complex permittivity of water as a function of frequency and temperature,” J. Chem. Eng. Data34(4), 371–374 (1989).0021-9568

【62】B.Zhenet al., “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett.113(25), 257401 (2014).0031-9007

【63】A. I.Kuznetsovet al., “Optically resonant dielectric nanostructures,” Science354(6314), aag2472 (2016).0036-8075

【64】D. G.Baranovet al., “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Optica4(7), 814–825 (2017).

【65】G. M.Larsson, “Wideband measurements of the forward RCS and the extinction cross section,” ACES J.28(12), 1145–1152 (2013).

【66】C. F.Bohren and D. R.Huffman, Absorption and Scattering of Light by Small Particles, John Wiley and Sons, New York (2008).

【67】C.Larssonet al., “Extinction cross section measurements,” in Proc. of Nordic Conf. on Radio Science and Communications, pp.?127–129 (2008).

引用该论文

Andrey A. Bogdanov,Kirill L. Koshelev,Polina V. Kapitanova,Mikhail V. Rybin,Sergey A. Gladyshev,Zarina F. Sadrieva,Kirill B. Samusev,Yuri S. Kivshar,Mikhail F. Limonov. Bound states in the continuum and Fano resonances in the strong mode coupling regime[J]. Advanced Photonics, 2019, 1(1): 016001

Andrey A. Bogdanov,Kirill L. Koshelev,Polina V. Kapitanova,Mikhail V. Rybin,Sergey A. Gladyshev,Zarina F. Sadrieva,Kirill B. Samusev,Yuri S. Kivshar,Mikhail F. Limonov. Bound states in the continuum and Fano resonances in the strong mode coupling regime[J]. Advanced Photonics, 2019, 1(1): 016001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF