首页 > 论文 > 激光与光电子学进展 > 56卷 > 3期(pp:31101--1)

激光电离空气可触控成像方法研究

Touch-Imaging Method Employing Laser-Ionized Air

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

阐述了激光电离空气成像的理论及其可行性, 描述了激光电离空气成像方式与装置, 提出了激光电离空气成像可触控的理论方法和方式, 认为只有用低功率飞秒激光电离空气成像, 才能让人触碰; 并提出基于检测激光回波相关参数, 检测图像是否被触碰的检测方式, 以及基于三角定位法向成像位置发射触碰检测信号的检测方式; 提出带有触感的、可应用于实践的空间可触控成像的方式, 即全息投影成像、雾屏成像与激光电离空气成像相结合, 前两者用来形成基本图像, 后者用来形成按钮图像并用于触控, 并在触碰时有触感。

Abstract

The theoretical structure for generating floating images from laser-ionized air is described and tested. A sensor mechanism by which users can interact with these images via touch is also proposed. The image-projection and touch feedback system uses a low-power femtosecond laser to ionize the air to create images and senses tactile interactions by detecting the laser echo. This method can be used for detecting a touch signal that changes the image position and for determining the location of a touch via triangulation. The proposed system can be applied in holographic projection imaging, fog-screen imaging, and laser imaging combined with ionized air. The holographic projection image or fog imaging screen is used to form a basic image, and the laser-ionized air is used to form images for touch interactions and buttons.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/lop56.031101

所属栏目:成像系统

收稿日期:2018-05-14

修改稿日期:2018-07-15

网络出版日期:2018-08-13

作者单位    点击查看

黄振鑫:上海理工大学机械工程学院, 上海 200093
陈庆生:复旦大学微电子学院, 上海 200433
孙佳忆:上海理工大学光电信息与计算机工程学院, 上海 200093

联系人作者:黄振鑫(gentle_xin@163.com)

【1】Zhao Q P. A review of virtual reality[J]. Science in China (Series F: Information Sciences), 2009, 39(1): 2-46.
赵沁平. 虚拟现实综述[J]. 中国科学(F辑: 信息科学), 2009, 39(1): 2-46.

【2】Zhang F J, Dai G Z, Peng X L. A survey on human-computer interaction in virtual reality[J]. Scientia Sinica Informationis, 2016, 46(12): 1711-1736.
张凤军, 戴国忠, 彭晓兰. 虚拟现实的人机交互综述[J]. 中国科学: 信息科学, 2016, 46(12): 1711-1736.

【3】Wang X Y. Holographic projection technology research[J]. Digital Technology & Application, 2011(8): 59, 61.
王绪言. 全息投影技术研究[J]. 数字技术与应用, 2011(8): 59, 61.

【4】Zhao Y X, Yi K J. Laser-excited air ionization stereoscopic display imaging device and method: 201510282483. 3[P]. 2015-05-28.
赵裕兴, 益凯劼. 激光激发空气电离的立体显示成像装置及其方法: 201510282483. 3[P]. 2015-05-28.

【5】Tian F, Xia X, Tian J, et al. Touch technology for large screen based on light reflection[J]. Opto-Electronic Engineering, 2013, 40(9): 76-81.
田丰, 夏雪, 田晶, 等. 基于光反射的超大屏幕触控技术研究[J]. 光电工程, 2013, 40(9): 76-81.

【6】Zhou Z W. The research and implementation of touching technology for large-screen interactive device based on machine vision[D]. Chengdu: University of Electric Science and Technology of China, 2013.
周祖微. 基于机器视觉的大屏幕交互式设备触控技术研究与实现[D]. 成都: 电子科技大学, 2013.

【7】Long J, Xiong W, Liu Y, et al. 3D assembly of aligned carbon nanotubes via femtosecond laser direct writing[J]. Chinese Journal of Lasers, 2017, 44(1): 0102003.
龙婧, 熊伟, 刘莹, 等. 基于飞秒激光直写的三维高定向碳纳米管组装[J]. 中国激光, 2017, 44(1): 0102003.

【8】Xie Z X, Chen W Z, Chi S K, et al. Industrial robot positioning system based on the guidance of the structured-light vision[J]. Acta Optica Sinica, 2016, 36(10): 1015001.
解则晓, 陈文柱, 迟书凯, 等. 基于结构光视觉引导的工业机器人定位系统[J]. 光学学报, 2016, 36(10): 1015001.

【9】Liu R, Wang D J, Jia P, et al. Overview on small target detection technology in infrared image[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050004.
刘让, 王德江, 贾平, 等. 红外图像弱小目标探测技术综述[J]. 激光与光电子学进展, 2016, 53(5): 050004.

【10】Dai Y Y. Investigation of propagation of femtosecond laser pluses in air[D]. Changchun: Jilin University, 2014.
代玉银. 飞秒激光在空气中的传输研究[D]. 长春: 吉林大学, 2014.

【11】Zhang X B, Li E L, Shi W, et al. The multi-process and application of the atmosphere ionized by laser[J]. Journal of Xi′an University of Technology, 2001, 17(3): 314-318.
张显斌, 李恩玲, 施卫, 等. 激光电离空气的多元过程及其应用[J]. 西安理工大学学报, 2001, 17(3): 314-318.

【12】Wang H, Zhang P X, Li Q X, et al. Mechanism research on air ionization and breakdown by laser[J]. Laser & Infrared, 2015, 45(12): 1418-1422.
王浩, 张藩潇, 李其祥, 等. 激光电离击穿空气机理研究[J]. 激光与红外, 2015, 45(12): 1418-1422.

【13】Yang Y L. Ionization and dissociation of N2 molecule in intense femtosecond laser field[D]. Haerbin: Harbin Institute of Technology, 2016.
杨宇亮. N2分子在飞秒强激光场中的电离和解离研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

【14】Kimura H, Asano A, Fujishiro I, et al. True 3D display[C]∥ACM Siggraph 2011 Emerging Technologies, 2011.

【15】Liu Y. The property of femtosecond laser simultaneous spatial and temporal focusing and its application in micro/nano fabrication[D]. Beijing: Beijing Institute of Technology, 2015.
刘洋. 飞秒激光时空同步聚焦特性及其微纳加工应用研究[D]. 北京: 北京理工大学, 2015.

【16】Wang L L. Method and theoretical study of metal micro machining based on femtosecond laser[D]. Zibo: Shandong University of Technology, 2016.
王雷雷. 基于飞秒激光的金属微细加工方法与理论研究[D]. 淄博: 山东理工大学, 2016.

【17】Wang M J, Gong Z, Gao M L, et al. The injury threshold of human skin irradiated with 308 nm excimer laser[J]. Chinese Journal of Laser Medicine & Surgery, 1994, 3(1): 26-28.
王勉镜, 龚卓, 高孟林, 等. 准分子激光308 nm波长人体皮肤损伤阈值测量[J]. 中国激光医学杂志, 1994, 3(1): 26-28.

【18】Chen J, Gao G H, Xu G D, et al. Cutaneous injure threshold of 355 nm ultraviolet laser irradiation[J]. Chinese Journal of Laser Medicine & Surgery, 1993(2): 77-80.
陈迹, 高光煌, 徐贵道, 等. 355 nm紫外激光辐照皮肤的损伤阈值研究[J]. 中国激光医学杂志, 1993(2): 77-80.

【19】Genuine Optronics Limited. Pharos femto second laser[EB/OL]. [2018-05-14]. http:∥www.gen-opt.com/i/fenlei3/Pharos_feimiao/216.html.

引用该论文

Huang Zhenxin,Chen Qingsheng,Sun Jiayi. Touch-Imaging Method Employing Laser-Ionized Air[J]. Laser & Optoelectronics Progress, 2019, 56(3): 031101

黄振鑫,陈庆生,孙佳忆. 激光电离空气可触控成像方法研究[J]. 激光与光电子学进展, 2019, 56(3): 031101

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF