首页 > 论文 > 中国激光 > 46卷 > 2期(pp:204010--1)

基于柱面透镜Otto结构SPR效应的金属薄膜厚度测量方法

Thickness Measurement Method of Metallic Thin Film Based on SPR Effect Generated by Cylindrical Lens with Otto Configuration

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于柱面透镜修正Otto结构产生的表面等离子体共振(SPR)效应,提出一种测量金属薄膜厚度的方法。该方法无需用s偏振光提取背景光强,可直接利用在p偏振光入射条件下得到的单幅SPR吸收图像拟合背景光强,进而得到竖直方向上的归一化反射率曲线。从而建立光学薄膜模型并拟合了反射率曲线,反演出待测金属薄膜的厚度参数。实验对一个纳米级厚度的Au膜样品进行测量,测量结果表明,Au膜的平均厚度与商用光谱椭偏仪的测量结果之差为0.1 nm,验证了该方法的有效性。

Abstract

Based on the surface plasmon resonance (SPR) effect caused by a modified Otto structure of cylindrical lens, a method for measuring the thickness of metallic thin films is proposed. For this proposed method, the background intensity can be fitted only with the single SPR absorption image obtained under the p-polarized light incidence, no need using the s-polarized light. Hence, the normalized reflectivity curve in the vertical direction is obtained. The reflectivity curve is fitted by establishing a model of the optical thin film and the thickness parameters of the metallic thin film are derived. In the experiment, a sample of Au film with a thickness in the nanometer range is measured. The measurement results show that the difference between the measured average thickness of Au film and the result obtained by commercial spectroscopic ellipsometer is only 0.1 nm, which verifies the effectiveness of this method.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/cjl201946.0204010

所属栏目:测量与计量

基金项目:政府间国际科技创新合作重点专项(2016YFE0110600)、国家自然科学基金(51605473)、上海市国际科技合作基金(16520710500)、上海市科技人才计划(17YF1429500)、上海市青年科技英才扬帆计划(18YF1426500)、青促会资助

收稿日期:2018-09-13

修改稿日期:2018-10-22

网络出版日期:2018-11-20

作者单位    点击查看

李桂运:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学, 北京 100049
谷利元:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学, 北京 100049
胡敬佩:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
朱玲琳:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
曾爱军:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学, 北京 100049
黄惠杰:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800中国科学院大学, 北京 100049

联系人作者:曾爱军(aijunzeng@siom.ac.cn)

【1】Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969.

【2】Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537.

【3】Politano A, Chiarello G. The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films[J]. Progress in Surface Science, 2015, 90(2): 144-193.

【4】Orr B G, Jaeger H M, Goldman A M. Transition-temperature oscillations in thin superconducting films[J]. Physical Review Letters, 1984, 53(21): 2046-2049.

【5】Smith G B, Maaroof A I. Optical response in nanostructured thin metal films with dielectric over-layers[J]. Optics Communications, 2004, 242(4/5/6): 383-392.

【6】Hooper I R, Sambles J R. Some considerations on the transmissivity of thin metal films[J]. Optics Express, 2008, 16(22): 17258-17267.

【7】Liu S L, Bo B X, Zou Y X, et al. Ultrawide-band terahertz beam-splitter based on ultrathin metallic films[J]. Acta Optica Sinica, 2017, 37(11): 1131002.
刘松林, 薄报学, 邹仪宣, 等. 基于超薄金属薄膜的超宽频太赫兹分束器[J]. 光学学报, 2017, 37(11): 1131002.

【8】Yang Z T, Gu D, Gao Y C. An improved dispersion law of thin metal film and application to the study of surface plasmon resonance phenomenon[J]. Optics Communications, 2014, 329: 180-183.

【9】Kosinova A, Wang D, Schaaf P, et al. Whiskers growth in thin passivated Au films [J]. Acta Materialia, 2018, 149: 154-163.

【10】Wang P P, Xu C, Fu E G, et al. The study on the electrical resistivity of Cu/V multilayer films subjected to helium (He) ion irradiation[J]. Applied Surface Science, 2018, 440: 396-402.

【11】Lin Y Q, Feng S M, Wang K X, et al. Effects of film thickness less than electrical mean free path on reflectivity[J]. Acta Photonica Sinica, 2011, 40(2): 263-266.
林育琼, 冯仕猛, 王坤霞, 等. 金属薄膜厚度小于电子自由程对其光反射率的影响[J]. 光子学报, 2011, 40(2): 263-266.

【12】Li M Y, Gu P F, Zhang J L, et al. Study on the property of subwavelength imaging in a metal thin-film structure[J]. Acta Physica Sinica, 2008, 57(7): 4564-4569.
李明宇, 顾培夫, 张锦龙, 等. 金属薄膜亚波长近场成像特性研究[J]. 物理学报, 2008, 57(7): 4564-4569.

【13】Ma X J, Gao D Z, Yang M S, et al. Measurement of thickness of metal thin film by using chromatic confocal spectral technology[J]. Optics and Precision Engineering, 2011, 19(1): 17-22.
马小军, 高党忠, 杨蒙生, 等. 应用白光共焦光谱测量金属薄膜厚度[J]. 光学 精密工程, 2011, 19(1): 17-22.

【14】Seo Y, Jhe W. Atomic force microscopy and spectroscopy[J]. Reports on Progress in Physics, 2008, 71(1): 016101.

【15】Zhu H N, Liu L G, Wen Y W, et al. High-precision system for automatic null ellipsometric measurement[J]. Applied Optics, 2002, 41(22): 4536-4540.

【16】Liu H S, Yang X, Liu D D, et al. Spot effect in optical constant characterization of thin films fabricated by ion beam sputtering[J]. Acta Optica Sinica, 2017, 37(10): 1031001.
刘华松, 杨霄, 刘丹丹, 等. 离子束溅射薄膜光学常数表征的光斑效应[J]. 光学学报, 2017, 37(10): 1031001.

【17】Chu L Q, Zhang Q, Frch R. Surface plasmon-based techniques for the analysis of plasma deposited functional films and surfaces[J]. Plasma Processes and Polymers, 2015, 12(9): 941-952.

【18】Bliokh Y P, Vander R, Lipson S G, et al. Visualization of the complex refractive index of a conductor by frustrated total internal reflection[J]. Applied Physics Letters, 2006, 89(2): 021908.

【19】Iwata T, Maeda S. Simulation of an absorption-based surface-plasmon resonance sensor by means of ellipsometry[J]. Applied Optics, 2007, 46(9): 1575-1582.

【20】Iwata T, Mizutani Y. Ellipsometric measurement technique for a modified Otto configuration used for observing surface-plasmon resonance[J]. Optics Express, 2010, 18(14): 14480-14487.

【21】Hu G H, He H B, Sytchkova A, et al. High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration[J]. Optics Express, 2017, 25(12): 13425-13434.

【22】Shan Y, Hu G H, Gu L Y, et al. Measuring optical constants of ultrathin layers using surface-plasmon-resonance-based imaging ellipsometry[J]. Applied Optics, 2017, 56(28): 7898-7904.

【23】Iwata T, Wada Y, Nishigaki K, et al. Two-dimensional thickness measurement of a dielectric thin layer on a metal by use of surface-plasmon-resonance-based ellipsometry[J].Proceedings of SPIE, 2011,8169: 816913.

【24】Hu S Y, Zeng A J, Gu L Y, et al. Measurement method of film parameters of metal based on imaging ellipsometry and surface-plasmon resonance[J]. Chinese Journal of Lasers, 2015, 42(11): 1108001.
胡仕玉, 曾爱军, 谷利元, 等. 基于椭偏成像光路和表面等离子体共振效应的金属薄膜参数测量方法研究[J]. 中国激光, 2015, 42(11): 1108001.

【25】Hu G H, He H B, Sytchkova A, et al. High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration[J]. Optics Express, 2017, 25(12): 13425-13434.

引用该论文

Li Guiyun,Gu Liyuan,Hu Jingpei,Zhu Linglin,Zeng Aijun,Huang Huijie. Thickness Measurement Method of Metallic Thin Film Based on SPR Effect Generated by Cylindrical Lens with Otto Configuration[J]. Chinese Journal of Lasers, 2019, 46(2): 0204010

李桂运,谷利元,胡敬佩,朱玲琳,曾爱军,黄惠杰. 基于柱面透镜Otto结构SPR效应的金属薄膜厚度测量方法[J]. 中国激光, 2019, 46(2): 0204010

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF