首页 > 论文 > 激光与光电子学进展 > 56卷 > 4期(pp:41602--1)

石墨烯双曲超材料的传输矩阵法优化及传输特性

Optimization of Transfer Matrix Method and Transmission Properties of Graphene-Hyperbolic Metamaterials

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于等效媒质理论,分析了近红外波段的石墨烯-电介质多层膜结构双曲超材料(GDM-HMMs)的双曲色散关系,对传输矩阵法(TMM)进行了优化,计算分析了不同周期数下的石墨烯双曲超材料的透射谱。基于法布里-珀罗共振腔(F-P腔),理论分析了透射谱的演变规律,验证了石墨烯双曲超材料在近红外波段的双曲色散关系。研究结果表明,实现电磁波传输需要大切向波矢条件。结构总周期数影响透射谱特性,可用F-P腔理论进行分析和反向结构设计。

Abstract

Based on the effective medium theory, the hyperbolic dispersion relationship of graphene-dielectric multilayer (GDM) hyperbolic metamaterials (HMMs) in the near-infrared waveband is analyzed. The transfer matrix method (TMM) is optimized. The transmission spectra of GDM-HMMs with different numbers of periods are calculated and analyzed. Based on the Fabry-Perot (F-P) cavity theory, the evolution of transmission spectra is theoretically analyzed, and the hyperbolic dispersion relationship of GDM-HMMs in the near-infrared waveband is verified. The research results show that the large tangential wave vector condition is needed for the realization of electromagnetic wave transmission in GDM-HMMs. The transmission spectral characteristics are influenced by the total number of structural periods, and the F-P cavity theory can be used for the analysis and reverse structural design.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/lop56.041602

所属栏目:材料

基金项目:国家自然科学基金(11404170,61604073)、江苏省自然科学基金(BK20160839)、南京邮电大学基金(NY217110)

收稿日期:2018-08-23

修改稿日期:2018-09-01

网络出版日期:2018-09-04

作者单位    点击查看

袁沭娟:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
许吉:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
李洋:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
刘山峰:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
陆昕怡:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
陆云清:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
刘宁:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
张柏富:南京理工大学电光学院, 江苏 南京 210094

联系人作者:许吉(xuji@njupt.edu.cn)

【1】Poddubny A, Iorsh I, Belov P, et al. Hyperbolic metamaterials[J]. Nature Photonics, 2013, 7(12): 948-957.

【2】Fisher R K, Gould R W. Resonance cones in the field pattern of a short antenna in an anisotropic plasma[J]. Physical Review Letters, 1969, 22(21): 1093-1095.

【3】Yao J, Wang Y, Tsai K T, et al. Design, fabrication and characterization of indefinite metamaterials of nanowires[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1950): 3434-3446.

【4】Liu W G, Hu B, Li B, et al. Research progress of optical modulator based on graphene-metal composite structures[J]. Laser & Optoelectronics Progress, 2016, 53(3): 030005.
刘伟光, 胡滨, 李彪, 等. 基于石墨烯-金属复合结构的光学调制器研究进展[J]. 激光与光电子学进展, 2016, 53(3): 030005.

【5】Liu C H, Norris T B, Chang Y C, et al. Mid-infrared hyperbolic metamaterial based on graphene-dielectric multilayers[C]∥Conference on Lasers and Electro-Optics, May 10-15, 2015, San Jose, California United States. Washington: Optical Society of America, 2015: FM2C.1.

【6】Liu Y Z, Zhang Y P, Cao Y Y, et al. Modulator of tunable modulation depth based on graphene metamaterial[J]. Acta Optica Sinica, 2016, 36(10): 1016002.
刘元忠, 张玉萍, 曹妍妍, 等. 基于石墨烯超材料深度可调的调制器[J]. 光学学报, 2016, 36(10): 1016002.

【7】Yang X X,Kong X T,Dai Q. Optical properties of graphene plasmons and their potential applications[J]. Acta Physica Sinica, 2015, 64(10): 106801.
杨晓霞, 孔祥天, 戴庆. 石墨烯等离激元的光学性质及其应用前景[J]. 物理学报, 2015, 64(10): 106801.

【8】Zhang R Z, Zhang Z M. Tunable positive and negative refraction of infrared radiation in graphene-dielectric multilayers[J]. Applied Physics Letters, 2015, 107(19): 191112.

【9】Chebykin A V, Orlov A A, Simovski C R, et al. Nonlocal effective parameters of multilayered metal-dielectric metamaterials[J]. Physical Review B, 2012, 86(11): 115420.

【10】Cai Q, Ye R W, Fang Y T. Broadband absorption based on graphene metamaterial composite structure[J]. Chinese Journal of Lasers, 2017, 44(10): 1003005.
蔡强, 叶润武, 方云团. 石墨烯超材料复合结构的宽带吸收[J]. 中国激光, 2017, 44(10): 1003005.

【11】Kang Y Q, Liu H M, Cao Q Z. Wideband absorption in Thue-Morse quasiperiodic graphene-based hyperbolic metamaterials[J]. Optical Engineering, 2018, 57(3): 037102.

【12】Li Z, Liang W Y, Chen W H. Switchable hyperbolic metamaterials based on the graphene-dielectric stacking structure and optical switches design[J]. Europhysics Letters, 2017, 120(3): 37001.

【13】Zhang L W, Zhang Z R, Kang C Y, et al. Tunable bulk polaritons of graphene-based hyperbolic metamaterials[J]. Optics Express, 2014, 22(11): 14022-14030.

【14】Sreekanth K V, de Luca A, Strangi G. Experimental demonstration of surface and bulk plasmon polaritons in hypergratings[J]. Scientific Reports, 2013, 3: 3291.

【15】Ding J, Arigong B, Ren H, et al. Tunable complementary metamaterial structures based on graphene for single and multiple transparency windows[J]. Scientific Reports, 2014, 4: 6128.

【16】Othman M A K, Guclu C, Capolino F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption[J]. Optics Express, 2013, 21(6): 7614-7632.

【17】Wood B, Pendry J B, Tsai D P. Directed subwavelength imaging using a layered metal-dielectric system[J]. Physical Review B, 2006, 74(11): 115116.

【18】Ferrari L, Wu C, Lepage D, et al. Hyperbolic metamaterials and their applications[J]. Progress in Quantum Electronics, 2015, 40: 1-40.

【19】Zhukovsky S V, Andryieuski A, Sipe J E, et al. From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers[J]. Physical Review B, 2014, 90(15): 155429.

【20】Chen Y L, Xu J, Shi N N, et al. Mode properties of metal-insulator-metal waveguide Bragg grating[J]. Acta Optica Sinica, 2017, 37(11): 1123002.
陈奕霖, 许吉, 时楠楠, 等. 金属-介质-金属波导布拉格光栅的模式特性 [J]. 光学学报, 2017, 37(11): 1123002.

【21】Liu Q N, Liu Q. Transmission theory of photons and photonic crystals[M]. Beijing: Science Press, 2013: 8-10.
刘启能, 刘沁. 光子、声子晶体的传输理论[M]. 北京: 科学出版社, 2013: 8-10.

【22】Wan P,Yang C H. Properties of graphene TE mode surface plasmons and surface plasmon waveguides[J]. Acta Optica Sinica, 2017, 37(11): 1124002.
万鹏, 杨翠红. 石墨烯TE模表面等离子体波和表面等离子体波导的特性[J]. 光学学报, 2017, 37(11): 1124002.

【23】Jiang Y,Tang C J. Principle and application of optical fiber Fabry-Perot interferometer[M]. Beijing: National Defense Industry Press, 2009: 6-8.
江毅, 唐才杰. 光纤Fabry-Perot干涉仪原理及应用[M]. 北京: 国防工业出版社, 2009: 6-8.

引用该论文

Yuan Shujuan,Xu Ji,Li Yang,Liu Shanfeng,Lu Xinyi,Lu Yunqing,Liu Ning,Zhang Baifu. Optimization of Transfer Matrix Method and Transmission Properties of Graphene-Hyperbolic Metamaterials[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041602

袁沭娟,许吉,李洋,刘山峰,陆昕怡,陆云清,刘宁,张柏富. 石墨烯双曲超材料的传输矩阵法优化及传输特性[J]. 激光与光电子学进展, 2019, 56(4): 041602

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF