石墨烯双曲超材料的传输矩阵法优化及传输特性
Optimization of Transfer Matrix Method and Transmission Properties of Graphene-Hyperbolic Metamaterials
摘要
基于等效媒质理论,分析了近红外波段的石墨烯-电介质多层膜结构双曲超材料(GDM-HMMs)的双曲色散关系,对传输矩阵法(TMM)进行了优化,计算分析了不同周期数下的石墨烯双曲超材料的透射谱。基于法布里-珀罗共振腔(F-P腔),理论分析了透射谱的演变规律,验证了石墨烯双曲超材料在近红外波段的双曲色散关系。研究结果表明,实现电磁波传输需要大切向波矢条件。结构总周期数影响透射谱特性,可用F-P腔理论进行分析和反向结构设计。
Abstract
Based on the effective medium theory, the hyperbolic dispersion relationship of graphene-dielectric multilayer (GDM) hyperbolic metamaterials (HMMs) in the near-infrared waveband is analyzed. The transfer matrix method (TMM) is optimized. The transmission spectra of GDM-HMMs with different numbers of periods are calculated and analyzed. Based on the Fabry-Perot (F-P) cavity theory, the evolution of transmission spectra is theoretically analyzed, and the hyperbolic dispersion relationship of GDM-HMMs in the near-infrared waveband is verified. The research results show that the large tangential wave vector condition is needed for the realization of electromagnetic wave transmission in GDM-HMMs. The transmission spectral characteristics are influenced by the total number of structural periods, and the F-P cavity theory can be used for the analysis and reverse structural design.
所属栏目:材料
基金项目:国家自然科学基金(11404170,61604073)、江苏省自然科学基金(BK20160839)、南京邮电大学基金(NY217110)
收稿日期:2018-08-23
修改稿日期:2018-09-01
网络出版日期:2018-09-04
作者单位 点击查看
许吉:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
李洋:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
刘山峰:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
陆昕怡:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
陆云清:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
刘宁:南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
张柏富:南京理工大学电光学院, 江苏 南京 210094
联系人作者:许吉(xuji@njupt.edu.cn)
【1】Poddubny A, Iorsh I, Belov P, et al. Hyperbolic metamaterials[J]. Nature Photonics, 2013, 7(12): 948-957.
【2】Fisher R K, Gould R W. Resonance cones in the field pattern of a short antenna in an anisotropic plasma[J]. Physical Review Letters, 1969, 22(21): 1093-1095.
【3】Yao J, Wang Y, Tsai K T, et al. Design, fabrication and characterization of indefinite metamaterials of nanowires[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 369(1950): 3434-3446.
【5】Liu C H, Norris T B, Chang Y C, et al. Mid-infrared hyperbolic metamaterial based on graphene-dielectric multilayers[C]∥Conference on Lasers and Electro-Optics, May 10-15, 2015, San Jose, California United States. Washington: Optical Society of America, 2015: FM2C.1.
【7】Yang X X,Kong X T,Dai Q. Optical properties of graphene plasmons and their potential applications[J]. Acta Physica Sinica, 2015, 64(10): 106801.
杨晓霞, 孔祥天, 戴庆. 石墨烯等离激元的光学性质及其应用前景[J]. 物理学报, 2015, 64(10): 106801.
【8】Zhang R Z, Zhang Z M. Tunable positive and negative refraction of infrared radiation in graphene-dielectric multilayers[J]. Applied Physics Letters, 2015, 107(19): 191112.
【9】Chebykin A V, Orlov A A, Simovski C R, et al. Nonlocal effective parameters of multilayered metal-dielectric metamaterials[J]. Physical Review B, 2012, 86(11): 115420.
【11】Kang Y Q, Liu H M, Cao Q Z. Wideband absorption in Thue-Morse quasiperiodic graphene-based hyperbolic metamaterials[J]. Optical Engineering, 2018, 57(3): 037102.
【12】Li Z, Liang W Y, Chen W H. Switchable hyperbolic metamaterials based on the graphene-dielectric stacking structure and optical switches design[J]. Europhysics Letters, 2017, 120(3): 37001.
【13】Zhang L W, Zhang Z R, Kang C Y, et al. Tunable bulk polaritons of graphene-based hyperbolic metamaterials[J]. Optics Express, 2014, 22(11): 14022-14030.
【14】Sreekanth K V, de Luca A, Strangi G. Experimental demonstration of surface and bulk plasmon polaritons in hypergratings[J]. Scientific Reports, 2013, 3: 3291.
【15】Ding J, Arigong B, Ren H, et al. Tunable complementary metamaterial structures based on graphene for single and multiple transparency windows[J]. Scientific Reports, 2014, 4: 6128.
【16】Othman M A K, Guclu C, Capolino F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption[J]. Optics Express, 2013, 21(6): 7614-7632.
【17】Wood B, Pendry J B, Tsai D P. Directed subwavelength imaging using a layered metal-dielectric system[J]. Physical Review B, 2006, 74(11): 115116.
【18】Ferrari L, Wu C, Lepage D, et al. Hyperbolic metamaterials and their applications[J]. Progress in Quantum Electronics, 2015, 40: 1-40.
【19】Zhukovsky S V, Andryieuski A, Sipe J E, et al. From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers[J]. Physical Review B, 2014, 90(15): 155429.
【21】Liu Q N, Liu Q. Transmission theory of photons and photonic crystals[M]. Beijing: Science Press, 2013: 8-10.
刘启能, 刘沁. 光子、声子晶体的传输理论[M]. 北京: 科学出版社, 2013: 8-10.
【23】Jiang Y,Tang C J. Principle and application of optical fiber Fabry-Perot interferometer[M]. Beijing: National Defense Industry Press, 2009: 6-8.
江毅, 唐才杰. 光纤Fabry-Perot干涉仪原理及应用[M]. 北京: 国防工业出版社, 2009: 6-8.
引用该论文
Yuan Shujuan,Xu Ji,Li Yang,Liu Shanfeng,Lu Xinyi,Lu Yunqing,Liu Ning,Zhang Baifu. Optimization of Transfer Matrix Method and Transmission Properties of Graphene-Hyperbolic Metamaterials[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041602
袁沭娟,许吉,李洋,刘山峰,陆昕怡,陆云清,刘宁,张柏富. 石墨烯双曲超材料的传输矩阵法优化及传输特性[J]. 激光与光电子学进展, 2019, 56(4): 041602