首页 > 论文 > 激光与光电子学进展 > 56卷 > 5期(pp:51404--1)

基于热力耦合的激光熔覆数值模拟与实验研究

Numerical Simulation and Experimental Research of Laser Cladding Based on Thermo-Mechanical Coupling

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于热-结构间接耦合非线性有限元分析,在不同的激光工艺参数下,利用ANSYS生死单元技术对激光熔覆的温度场和应力场进行了数值模拟,研究了激光功率和扫描速度对温度场和应力场分布规律的影响。结果表明,通过分析有限元模型的温度分布规律和试件金相组织的形貌特征,验证了该模型的可靠性;熔覆层温度变化分为脉冲式急速上升和呈双曲线形状下降两个阶段;沿激光扫描方向,熔覆层表面多个节点的温度-时间曲线具有逐渐增大的峰值;熔覆层与基体结合面中部沿Z轴方向,靠近固定端应力较大,基底中部沿X轴方向应力呈W状对称分布,自由端中部沿Y轴方向,熔覆层和基体结合处易产生应力集中和突变。

Abstract

The temperature and stress fields of the laser cladding are numerically simulated by ANSYS birth-death element technique based on the thermo-mechanical indirect coupling nonlinear finite element analysis. The results show that this proposed model is reliable by analyzing the temperature distribution of the finite element model and the morphological characteristics of the metallographic structure of the experimental specimens. The temperature change of the cladding layer can be divided into two stages. In the first stage, the temperature rises rapidly like a pulse. In the second stage, the temperature drops to the overall temperature of the matrix which likes a hyperbolic shape. On the surface of the cladding layer and along the laser scanning direction, the peaks of the temperature time curves of multiple nodes show a trend of gradual increase. The distribution curves of the residual stress show that there is a greater residual stress at the position near the fixed end along the Z axis in the middle of the bonding surface of the cladding layer and the matrix. The residual stress is distributed symmetrically like the shape of W along the X axis in the middle of the matrix undersurface which is likely to cause stress concentration and mutation at the interface between the cladding layer and the matrix along the Y axis in the middle of the free end.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249;TG174.44

DOI:10.3788/lop56.051404

所属栏目:激光器与激光光学

基金项目:国家自然科学基金(51575237)、装备预研教育部联合基金(6141A0221)、江苏出入境检验检疫局科技计划项目(2018KJ04)

收稿日期:2018-08-06

修改稿日期:2018-09-12

网络出版日期:2018-09-27

作者单位    点击查看

任仲贺:江南大学机械工程学院, 江苏 无锡 214122江苏省食品先进制造装备技术重点实验室, 江苏 无锡 214122
武美萍:江南大学机械工程学院, 江苏 无锡 214122江苏省食品先进制造装备技术重点实验室, 江苏 无锡 214122
唐又红:苏州出入境检验检疫局, 江苏 苏州 215021
韩基泰:江南大学机械工程学院, 江苏 无锡 214122
龚玉玲:江南大学机械工程学院, 江苏 无锡 214122

联系人作者:武美萍(wmp169@jiangnan.edu.cn)

【1】Xu B S, Li E Z, Zheng H D, et al. The remanufacturing industry and its development strategy in China[J]. Engineering Science, 2017, 19(3): 61-65.
徐滨士, 李恩重, 郑汉东, 等. 我国再制造产业及其发展战略[J]. 中国工程科学, 2017, 19(3): 61-65.

【2】Wei S G, Cheng D B, Sundin E, et al. Motives and barriers of the remanufacturing industry in China[J]. Journal of Cleaner Production, 2015, 94: 340-351.

【3】Feng H, Li J F, Sun J. Study on remanufacturing repair of damaged crank shaft journal surface by laser cladding[J]. Chinese Journal of Lasers, 2014, 41(8): 0803003.
封慧, 李剑峰, 孙杰. 曲轴轴颈损伤表面的激光熔覆再制造修复[J]. 中国激光, 2014, 41(8): 0803003.

【4】Tseng W C, Aoh J N. Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source[J]. Optics & Laser Technology, 2013, 48: 141-152.

【5】Li J Z, Li X F, Zuo D W, et al. Process test and temperature field simulation of the Al/Ti laser cladding coating above 7050 aluminum alloy[J]. Laser & Optoelectronics Progress, 2014, 51(12): 121403.

【6】Torres Cruz A, de Lange D F, Medellín-Castillo H I. Comparative study of numerical models of the laser forming process[J]. Journal of Laser Applications, 2015, 27(S2): S29105.

【7】Boutalbi N, Bouaziz M N, Allouche M. Influence of temperature-dependent absorptivity on solid surface heated by CO2 and Nd∶YAG lasers[J]. Journal of Laser Applications, 2016, 28(3): 032004.

【8】Farahmand P, Kovacevic R. An experimental-numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser[J]. Optics & Laser Technology, 2014, 63: 154-168.

【9】Mirzade F K, Niziev V G, Panchenko V Y, et al. Kinetic approach in numerical modeling of melting and crystallization at laser cladding with powder injection[J]. Physica B: Condensed Matter, 2013, 423: 69-76.

【10】Li H, Wang Y F, Shi Z Q, et al. Simulation of laser cladding temperature field and flow field based on ellipse heat source model[J]. Applied Laser, 2017, 37(2): 218-222.
李豪, 王彦芳, 石志强, 等. 基于椭圆热源模型的激光熔覆温度场与流场数值模拟[J]. 应用激光, 2017, 37(2): 218-222.

【11】Liu H, Yu G, He X L, et al. Three-dimensional numerical simulation of transient temperature field and coating geometry in powder feeding laser cladding[J]. Chinese Journal of Lasers, 2013, 40(12): 1203007.
刘昊, 虞钢, 何秀丽, 等. 送粉式激光熔覆中瞬态温度场与几何形貌的三维数值模拟[J]. 中国激光, 2013, 40(12): 1203007.

【12】Song J L, Li Y T, Deng Q L, et al. Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 2010, 46(14): 29-39.
宋建丽, 李永堂, 邓琦林, 等. 激光熔覆成形技术的研究进展[J]. 机械工程学报, 2010, 46(14): 29-39.

【13】Hua L, Tian W, Liao W H, et al. Fatigue life evaluation for laser cladding component based on non-linear continuum fatigue damage model[J]. Chinese Journal of Lasers, 2015, 42(9): 0903006.
华亮, 田威, 廖文和, 等. 基于非线性连续疲劳损伤的激光熔覆构件疲劳寿命评估[J].中国激光, 2015, 42(9): 0903006.

【14】Li M Y, Cai C B, Han B, et al. Numerical simulation of preheating on temperature and stress fields by laser cladding Ni-based ceramic coating[J]. Transactions of Materials and Heat Treatment, 2015, 36(12): 197-203.
李美艳, 蔡春波, 韩彬, 等. 预热对激光熔覆陶瓷涂层温度场和应力场影响[J]. 材料热处理学报, 2015, 36(12): 197-203.

【15】Liu Q C, Janardhana M, Hinton B, et al. Laser cladding as a potential repair technology for damaged aircraft components[J]. International Journal of Structural Integrity, 2011, 2(3): 314-331.

【16】Fang J X, Dong S Y, Xu B S, et al. Study of stresses of laser metal deposition using FEM considering phase transformation effects[J]. Chinese Journal of Lasers, 2015, 42(5): 0503009.
方金祥, 董世运, 徐滨士, 等. 考虑固态相变的激光熔覆成形应力场有限元分析[J]. 中国激光, 2015, 42(5): 0503009.

【17】Dai D P, Jiang X H, Cai J P, et al. Numerical simulation of temperature field and stress distribution in Inconel718 Ni base alloy induced by laser cladding[J]. Chinese Journal of Lasers, 2015, 42(9): 0903005.
戴德平, 蒋小华, 蔡建鹏, 等. 激光熔覆Inconel718镍基合金温度场与应力场模拟[J]. 中国激光, 2015, 42(9): 0903005.

【18】China Aeronautical Materials Handbook Editorial Committee. China aeronautical materials handbook[M]. 2nd ed. Beijing: China Standard Press, 2002: 510-526.
中国航空材料手册编辑委员会. 中国航空材料手册[M]. 2版. 北京: 中国标准出版社, 2002: 510-526.

【19】Cao Y L. Research of microstructure and properties of laser cladding Co/RE on 316L stainless steel[D]. Jilin: Jilin University, 2015: 37-47.
曹云龙. 316L不锈钢表面激光熔覆Co/稀土涂层组织与性能的研究[D]. 吉林: 吉林大学, 2015: 37-47.

【20】Gong X Y, Gao S Y, Xian S Y, et al. Warp deformation in single-track laser cladding based on temperature characteristics[J]. Laser & Optoelectronics Progress, 2017(10): 101410.
宫新勇, 高士友, 咸士玉, 等. 基于温度特征的单道激光熔覆翘曲变形[J]. 激光与光电子学进展, 2017(10):101410.

【21】Li M Y, Han B, Cai C B, et al. Numerical simulation on temperature and stress fields of laser cladded Ni-based coating[J]. Transactions of the China Welding Institution, 2015, 36(5): 25-28,32,114.
李美艳, 韩彬, 蔡春波, 等. 激光熔覆镍基合金温度场和应力场数值模拟[J]. 焊接学报, 2015, 36(5): 25-28, 32, 114.
Li M Y, Han B, Cai C B, et al. Numerical simulation on temperature and stress fields of laser cladded Ni-based coating[J]. Transactions of the China Welding Institution, 2015, 36(5): 25-28,32,114.
李美艳, 韩彬, 蔡春波, 等. 激光熔覆镍基合金温度场和应力场数值模拟[J]. 焊接学报, 2015, 36(5): 25-28, 32, 114.

【22】Liu Y C, Fan C F, Yin X L, et al. Temperature and stress analysis of dual-beam laser cladding on gray cast iron surface[J]. Applied Laser, 2014, 34(4): 288-293.
刘衍聪, 范常峰, 尹晓丽, 等. 铸铁表面双光束激光熔覆温度场与应力场分析[J]. 应用激光, 2014, 34(4): 288-293.

【23】Wang K, Zhao J F, Pan H, et al. Influence of repair cross section on stress-field distribution in the nickel-based superalloy laser remanufacturing[J]. Laser & Optoelectronics Progress, 2013, 50(4): 041402.
王凯, 赵剑峰, 潘浒, 等. 工件形状对镍基高温合金激光再制造应力场分布的影响[J]. 激光与光电子学进展, 2013, 50(4): 041402.

【24】Wu J. An analysis of performance optimization criteria for a coupled radiative-convective heat transfer process[J]. Journal of Engineering Thermophysics, 2013, 34(10): 1922-1925.
吴晶. 辐射对流耦合换热过程性能优化准则分析[J]. 工程热物理学报, 2013, 34(10): 1922-1925.

【25】Li S, Cai X, Zhu L F, et al. Numerical simulation of wet submersible pump based on the single passage and structured grid[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2016, 42(4): 580-586.
李松, 蔡翔, 朱路飞, 等. 基于单流道和结构网格的湿式潜水泵数值模拟[J]. 华东理工大学学报(自然科学版), 2016, 42(4): 580-586.

【26】Pan H, Zhao J F, Liu Y L, et al. Controllability research on dilution ratio of nickel-based superalloy by laser cladding reparation[J]. Chinese Journal of Lasers, 2013, 40(4): 0403007.
潘浒, 赵剑峰, 刘云雷, 等. 激光熔覆修复镍基高温合金稀释率的可控性研究[J]. 中国激光, 2013, 40(4): 0403007.

【27】Kardas O O, Keles O, Akhtar S, et al. Laser cutting of rectangular geometry in 2024 aluminum alloy: thermal stress analysis[J]. Optics & Laser Technology, 2014, 64: 247-256.

引用该论文

Ren Zhonghe,Wu Meiping,Tang Youhong,Han Jitai,Gong Yuling. Numerical Simulation and Experimental Research of Laser Cladding Based on Thermo-Mechanical Coupling[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051404

任仲贺,武美萍,唐又红,韩基泰,龚玉玲. 基于热力耦合的激光熔覆数值模拟与实验研究[J]. 激光与光电子学进展, 2019, 56(5): 051404

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF