Photonics Research, 2019, 7 (3): 03000318, Published Online: Mar. 7, 2019   

All-angle optical switch based on the zero reflection effect of graphene–dielectric hyperbolic metamaterials Download: 617次

Author Affiliations
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
2 School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, China
Abstract
We have studied a switchable hyperbolic metamaterial composed of a graphene–dielectric periodic structure. By tuning the chemical potential of all graphene sheets simultaneously, the isofrequency curve can switch between an ellipse and a hyperbola conveniently. In particular, a special hyperbolic isofrequency curve with its asymptote perpendicular to the interface is obtained and used to realize the zero reflection effect. Furthermore, a zero-reflection-based optical switch working in the terahertz spectrum is demonstrated. Its bandwidth can be efficiently adjusted by geometric parameters such as permittivity and period. Such an optical switch possesses the merits of low loss, high transmittance contrast, high response speed, compact size, high tolerance of chemical potential, and having all incident angles (0°–90°) simultaneously. Such an optical switch holds great potential in many fields, such as data storage, beam steering, and integrated photonic circuits.

Wenyao Liang, Zheng Li, Yu Wang, Wuhe Chen, Zhiyuan Li. All-angle optical switch based on the zero reflection effect of graphene–dielectric hyperbolic metamaterials[J]. Photonics Research, 2019, 7(3): 03000318.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!