Photonics Research, 2019, 7 (3): 03000341, Published Online: Mar. 7, 2019  

Improved generation of correlated photon pairs from monolayer WS2 based on bound states in the continuum

Author Affiliations
Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract
Entangled photons are the fundamental resource in quantum information processing. How to produce them efficiently has always been a matter of concern. Here we propose a new way to produce correlated photons efficiently from monolayer WS2 based on bound states in the continuum (BICs). The BICs of radiation modes in the monolayer WS2 are realized by designing the photonic crystal slab-WS2-slab structure. The generation efficiency of correlated photon pairs from such a structure has been studied by using a rigorous quantum model of spontaneous parametric down-conversion with the plane wave expansion method. It is found that the generation efficiency of correlated photon pairs is greatly improved if the signal and idler fields are located at the BICs determined by the inverse scattering matrix of the structure. This is in contrast to the parametric down-conversion process for the enhanced generation of nonlinear waves if the pump field is located at the BICs determined by the scattering matrix of the structure. The generation rate of the correlated photon pairs can be improved by 7 orders of magnitude in some designed structures. The generated quantum signals are sensitive to the wavelength and exhibit narrowed relative line width, which is very beneficial for quantum information processing.

Tiecheng Wang, Zhixin Li, Xiangdong Zhang. Improved generation of correlated photon pairs from monolayer WS2 based on bound states in the continuum[J]. Photonics Research, 2019, 7(3): 03000341.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!